
Charles University in Prague

Faculty of Mathematics and Physics

MASTER THESIS

Markéta Popelová

Software tool for modelling coding and
processing of information in auditory

cortex of mice

Department of Software and Computer Science Education

Supervisor of the master thesis: Mgr. Cyril Brom, Ph.D.

Study programme: Computer Science

Specialization: Theoretical Computer Science

Prague 2013

I would like to thank my supervisor Cyril Brom for advises and comments. Huge
thanks also belong to other three people. First, to Ondřej Novák for numerous
and important consultations, encouragement and help in becoming at least a little
more familiarized with the auditory neuroscience and neuroscientific modelling.
Second, to Ondřej Zelenka for biological explanations and recommendations for
literature. And finally to Jakub Tomek for his enthusiasm, support, and possibility
of numerous and inspiring discussions.

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Coll., the Copyright Act, as amended, in particular the fact that
the Charles University in Prague has the right to conclude a license agreement
on the use of this work as a school work pursuant to Section 60 paragraph 1 of
the Copyright Act.

In date signature of the author

Název práce: Software tool for modelling coding and processing of information in
auditory cortex of mice

Autor: Markéta Popelová

Katedra: Kabinet software a výuky informatiky

Vedoućı diplomové práce: Mgr. Cyril Brom, Ph.D., Kabinet software a výuky
informatiky

Abstrakt: Porozuměńı zpracováváńı a kódováńı informaćı ve sluchové k̊uře (AC)
je stále nedostatečné. Z několika r̊uzných d̊uvod̊u by bylo užitečné mı́t výpočetńı
model AC, např́ıklad z d̊uvodu vysvětleńı, či ujasněńı procesu kódováńı infor-
maćı v AC. Prvńım ćılem této práce bylo vytvořit softwarový nástroj (simulátor
SUSNOIMAC), zaměřený na modelováńı AC. Druhým ćılem bylo navrhnout
výpočetńı model AC s následuj́ıćımi vlastnostmi: Izhikevich̊uv model neuronu,
dlouhodobá plasticita ve formě Spike-timing-dependent plasticity (STDP), šesti-
vrstvá architektura, parametrizované typy neuron̊u, hustota neuron̊u a pravděpo-
dobnost vzniku synapśı. Navržený model byl testován v deśıtkách experiment̊u, s
r̊uznými sadami parametr̊u a v r̊uzných velikostech (až 100 000 neuron̊u s takřka
21 milióny synapśı). Experimenty byly analyzovány a jejich výsledky srovnány s
pozorováńım skutečné AC. V práci popisujeme a analyzujeme několik zaj́ımavých
pozorováńı o aktivitě modelované śıtě a vzniku tonotopického uspořádáńı AC.

Kĺıčová slova: sluchová k̊ura, Izhikevich̊uv model neuronu, spiking neurony, STDP

Title: Software tool for modelling coding and processing of information in auditory
cortex of mice

Author: Markéta Popelová

Department: Department of Software and Computer Science Education

Supervisor: Mgr. Cyril Brom, Ph.D., Department of Software and Computer
Science Education

Abstract: The coding and processing of information in the auditory cortex (AC)
is still poorly understood. Having a computational model of the AC could be
beneficial for many reasons and could help to explain or clarify some questions
about the coding processing of information in the AC. The first goal of this
thesis was to develop a software tool (simulator SUSNOIMAC), specialized to
modelling the AC. The second goal of the thesis was to design a computational
model of the AC, with the following features: Izhikevich model of neuron, long-
term plasticity in the form of the Spike-timing-dependent plasticity (STDP), six
layers, and parametrized neuron types, density of neurons and probability of
synapses. The designed model was tested in dozens of experiments, with different
parametrization and network sizes (up to 100 thousand of neurons and almost
21 million of synapses). The experiments were analyzed and compared to the
observations from the real AC. Several interesting observations of network activity
and emergence of tonotopy were made, described and analyzed.

Keywords: auditory cortex, Izhikevich model of neuron, spiking neurons, STDP

Table of contents

General Introduction 5

1 Introduction to Neurobiology and Computational Neuroscience 9
1.1 Brief overview of neurobiology . 9
1.2 Brief overview of neuroscientific modelling 12

1.2.1 Level of Detail in models 13
1.2.1.1 Low-level models 13
1.2.1.2 Middle-level models 13
1.2.1.3 High-level models 14
1.2.1.4 Model group decision 14

1.2.2 Neuron models . 14
1.2.2.1 The Hodgkin-Huxley model 14
1.2.2.2 The Leaky Integrate and Fire model 15
1.2.2.3 The Izhikevich neuron model 16

1.2.2.3.1 Original Form 16
1.2.2.3.2 Generalized Form 18

1.2.3 Synapse Model . 19
1.2.3.1 Short-term synaptic plasticity 21
1.2.3.2 Long-term synaptic plasticity 21

1.2.4 Multi-compartmental models 21
1.2.5 Simulation techniques . 22

1.2.5.1 Clock-driven approach 22
1.2.5.2 Event-driven approach 23

1.2.6 Inputs, heterogeneity, noise and spontaneous activity . . . 24
1.3 Concluding remarks . 24

2 Simulator: Requirements and Related Works 27
2.1 Requirements . 27
2.2 Related Works . 28
2.3 Discussion . 29
2.4 Outcome . 30

3 Simulator: Methods 32
3.1 Language of model definition . 32

3.1.1 Language of model definition: possible choices 32
3.1.2 Language of model definition: outcome 33

3.2 Architecture design . 34
3.2.1 Architecture design: possible choices 34
3.2.2 Architecture design: discussion of possible choices 34
3.2.3 Architecture design: outcome: Hierarchical-modular archi-

tecture . 35
3.3 Network module . 35

3.3.1 Neurons and synapses . 36
3.3.2 Data structure for the network structure 37

1

3.3.2.1 Data structure for the network structure: possible
choices . 38

3.3.2.2 Data structure for the network structure: outcome 38
3.3.3 Input neurons . 38
3.3.4 General network attributes 38

3.4 Input module . 39
3.5 The simulation core . 39

3.5.1 Choice of the simulation technique 40
3.5.2 Main simulation algorithm 40
3.5.3 Alternative reality . 45

3.5.3.1 Alternative reality: motivation and description . . 45
3.5.3.2 Alternative reality: possible solutions 46
3.5.3.3 Alternative reality: discussion of possible solutions 47
3.5.3.4 Alternative reality: outcome 47

3.5.4 Computational improvements 48
3.5.4.1 Limiting frequent use of methods and constructors 48
3.5.4.2 Effective data structures 48
3.5.4.3 Parallel processing: description 49
3.5.4.4 Parallel processing: preliminary notes and trivial

solutions . 49
3.5.4.5 Parallel processing: Update of States section . 50
3.5.4.6 Parallel processing: Detection of Spikes section 50
3.5.4.7 Parallel processing: Propagation of Spikes section 51
3.5.4.8 Parallel processing: outcome 53

3.5.5 Spontaneous activity . 53
3.5.5.1 Implementation of spontaneous activity: possible

solutions . 54
3.5.5.2 Implementation of spontaneous activity: discus-

sion of possible solutions 55
3.5.5.3 Implementation of spontaneous activity: outcome 56
3.5.5.4 Implementation of spontaneous activity: choice of

pseudorandom generator 56
3.5.6 Setting simulation parameters 56

3.6 Analysis module . 60
3.6.1 Possible choices of implementation of the analysis module . 60

3.6.1.1 Discussion of possible choices of implementation
of the analysis module 60

3.6.1.2 Outcome of possible choices of implementation of
the analysis module 61

3.6.1.3 Functions of the analysis module: Java part . . . 61
3.6.1.4 Functions of the analysis module: Matlab part . . 63

3.7 Other Software . 68

4 Simulator: Results 69
4.1 Validation tests . 69
4.2 Performance . 69
4.3 Outcome . 71

5 Model of the Auditory Cortex: Biology Primer 72

2

6 Model of the Auditory Cortex: Motivation and Related Works 75
6.1 Motivation . 75

6.1.1 Hypothesis on emergence of tonotopy 76
6.2 Related Works . 76

6.2.1 The spiking neuron models 78
6.2.1.1 Model by Pinho, Mazza and Roque (1999–2006) . 78
6.2.1.2 Model by Larson, Billimoria, Perrone, and Sen

(2008, 2010) . 78
6.2.1.3 Model by Zhou et al. (2012) 78
6.2.1.4 Model by Chrostowski et al (2011) 79

6.2.2 The firing rate models . 79
6.2.2.1 Model by Harris et al. (2011) 79
6.2.2.2 Model by Schiff, Reyes, de La Rocha, and Mar-

chetti (2008, 2011) 80
6.2.2.3 Model by Loebel, Nelken and Tsodyks (2007) . . 80
6.2.2.4 Model by Bart, Bao, and Holcman (2005) 80

6.2.3 Other models . 81
6.2.3.1 Model by Otazu and Leibold (2011) 81
6.2.3.2 Model by Mesgarani, Fritz, and Shamma (2009) . 81

6.2.4 Concluding remarks to the related works 82
6.3 Model features . 83

7 Model of the Auditory Cortex: Methods 85
7.1 Model composition . 85
7.2 Coordinate systems and topology 88
7.3 Connectivity . 88

7.3.1 Connectivity data . 88
7.3.2 Selecting presynaptic candidates 88

7.3.2.1 Selecting presynaptic candidates – description . . 88
7.3.2.2 Selecting presynaptic candidates – solution 89

7.3.3 Setting synaptic conductance delays 91
7.3.4 Setting synaptic weights 91
7.3.5 Connectivity algorithm . 91
7.3.6 Possible pitfalls and other features 94

7.3.6.1 Self-connections: “If the same neuron can be se-
lected as pre- and post-synaptic neuron, is this
connection allowed?” 94

7.3.6.2 Multi-connections: “If a pair of pre- and post-
synaptic neurons can be chosen more than once,
is this connection allowed?” 94

7.3.6.3 Boundary effects: “How are boundary effects in
topological connections handled?” 94

7.4 Neurons, synapses, and channels 97
7.5 Model input, output, and free parameters 97

7.5.1 Inputs from thalamus . 97
7.5.2 Spontaneous activity . 98
7.5.3 Model outputs . 99

7.5.3.1 Auditory-related measurements 99

3

7.6 Model validation . 103
7.7 Model implementation . 103
7.8 Model parameters . 103

7.8.1 General model parameters 104
7.8.2 Layer parameters . 104
7.8.3 Neuron types parameters 105
7.8.4 Connectivity parameters 105
7.8.5 Input parameters . 105

7.9 Tabular description . 108

8 Model of the Auditory Cortex: Results 109
8.1 Parameter Space Search . 109

8.1.1 Description of the experiments 109
8.1.2 Results of the experiments 111

8.1.2.1 Overall description of the results 111
8.1.2.2 Description of the results grouped by features and

parameters . 112
8.1.3 Analysis and discussion of the results 120

8.1.3.1 Explanations . 120
8.1.3.2 Comparison to the real data 120

8.1.4 Outcome . 121
8.2 Features of the Chosen Parameters 122

8.2.1 Description of the experiments 122
8.2.2 Results of the experiments 122
8.2.3 Analysis and discussion of the results 127

8.3 Tonotopy Experiments . 128
8.3.1 Description of the experiments 128
8.3.2 Results of the experiments 130

8.3.2.1 Description of the results of general features . . . 130
8.3.2.2 Description of the results of tonotopy-related fea-

tures . 133
8.3.3 Analysis and discussion of the results 142

8.4 Conclusion . 142

9 Model of the Auditory Cortex: Discussion 144

10 Conclusion 147

Bibliography 148

List of Tables 164

Attachments 167

4

General Introduction

The ultimate target of ascending auditory pathways is the auditory cortex (AC),
a region of the brain cortex (see Figure 1). The research in auditory neuroscience
has made great progress in recent years. A lot is known about the electrophysio-
logical and morphological characteristics of single neurons in the auditory cortex
(Metherate and Aramakis, 1999; Watson, 2012; Oswald and Reyes, 2008; Wu
et al., 2011). We also have an idea of certain high-level functions of the individual
auditory areas. For example Broca’s area is traditionally considered a language
area and Heschl’s gyrus is associated with music perception (Meddis, 2010, chap.
5). It is even known that the perception of language and music are closely related
and that they share the same neural resources (Koelsch and Siebel, 2005; Ross
et al., 2007; Meddis, 2010, chap. 5). However the exact mechanisms of music,
speech, and other complex sounds processing, is unclear.

Figure 1: The human brain and areas of localization on lateral surface of
hemisphere: auditory area, motor area, visual area, and area of general
sensation. From (wikipedia.org, 2007a).

Research of processing and representation of complex sounds in the AC is full
of contradictory results. Whereas, according to some studies, it appears that AC
performs relatively simple operations (e.g. representations of physical aspects of
the stimuli, such as sound frequency or amplitude (Brodal, 2010)), other studies
show large degree of complexity in the neuronal responses (Näätänen et al., 2001),
for review see (Nelken, 2004). Sound categorization (Nelken et al., 2003; Ohl et al.,
2001; Russ et al., 2007; Bathellier et al., 2012) and sound representation in terms
of auditory objects (Nelken, 2004) are generally considered to be some of the
main functions of the AC. However, mechanisms behind these functions are still
a subject of debate and research.

Many experimental studies have researched the neuronal activity of single
neurons. Single-units recordings have revealed a lot about the properties and be-
haviour of single neurons, such as receptive fields (Brugge and Reale, 1985; Sally
and Kelly, 1988; Phillips and Kelly, 1989; Bathellier et al., 2012). However, single
neurons carry only pieces of information and their strength is in putting the infor-

5

mation together. Therefore, the focus has gradually moved on researching activity
of neuronal populations (Gaese, 2001; Harris et al., 2011; Rothschild et al., 2010;
Bathellier et al., 2012). This is possible thanks to development of new techno-
logy, such as silicon microelectrode arrays, tetrodes, spike-sorting techniques, or
two-photon in vivo microscopy.

In general, one of the current open problems is processing and coding in-
formation in large-scale neuronal networks. The question is to what extent and
exactly how the short-term and long-term synaptic plasticity, precise spike ti-
ming, or synaptic delays contribute to it. It appears that all these factors are
important in the processing of stimuli and sound representation.

Computational models may be a useful tool for verification of possible me-
chanisms of information coding and processing. Having a model that to a certain
extent corresponds to the observed reality allows us to test which mechanisms
work, what features are responsible for the observed behaviour and how would
the system behave without them. Such in silico experiments can have various
applications.

First, they can help to decompose and understand the researched system. At
the same time, these experiments can provide additional ideas to explain particu-
lar phenomena. They can also propose potentially promising experiments in vivo
for testing hypotheses confirmed by the computational model. This is advantage-
ous especially in those cases where in vivo experiments are difficult, costly, or hard
to repeat (e.g., due to time constraints, or impossibility of many replications), but
ideas what to test are plentiful and only some of them will lead to useful results.
Experiments in silico, running of which is typically fully automated, can identify
promising candidates. Finally, the traditional and probably the most useful ap-
plication of the models is modelling neural diseases or brain disorders. It allows
researching which mechanisms are responsible for which functions and which in-
terventions lead to the observed pathophysiological state. This knowledge can be
very useful in the design of methods for treating these disorders (e.g., tinnitus,
some types of hearing loss, epilepsy, etc.).

Computational models of the auditory system are by no means new. On the
contrary, many models of lower stages of the auditory system (e.g., auditory pe-
riphery, or cochlear nucleus) have been published and a part of them has led to
practical results. Majority of them help us in understanding the system, some
of them help with speech intelligibility (Assmann and Summerfield, 2004; Zilany
and Bruce, 2007), other help in development of hearing-aid signal processing al-
gorithms (Edwards, 2004, 2007; Levitt, 2004), or prostheses (Biondi and Schmid,
1972; Biondi, 1978). Auditory models are used at least to some extent in all
current designs of cochlear implant systems (Meddis, 2010, chap. 9). A detailed
description of the design of implantable auditory prostheses is presented in (Wil-
son, 2004). Other computational models were developed to research tinnitus and
its relation to sensorineural hearing loss (Schaette and Kempter, 2006).

Modelling the auditory cortex is much less explored area. Few mathemati-
cal and more abstract models have been developed, but large-scale AC models
with spiking neurons are almost untouched topic (Meddis, 2010, chap. 5). The
only few related works are described in the Chapter 6. Modelling of the AC is
rather challenging. It is still difficult to obtain parameters for neurons: their spa-
tial locations, features and connections, input signals from thalamus and other

6

cortical areas and data for model verification. Nevertheless, imaging techniques
are developing rapidly, allowing to record neuronal activity more precisely (in
time or spatial aspect), larger areas and areas deeper in the brain. Thanks to
that the models can be more accurate and plausible. We suppose that developing
such a model of the AC may lead to better comprehension of signal coding and
processing in the AC.

The main goals of this thesis were:

1. To develop a software tool (a simulator), in which models of the AC could
be created, run and analysed.

(a) The main requirements were: Izhikevich neuron model (as currently
one of the most successful spiking neuron models in terms of plausibili-
ty and computational cost (Izhikevich, 2003; Izhikevich et al., 2004a)),
synaptic delays (as it turned out to be a very important factor of in-
formation encoding) and long-term synaptic plasticity in the form of
spike-timing dependent plasticity (STDP) (Song et al., 2000).

(b) The main expected use of the simulator should be development of
models of the AC with the basic properties of the real cortex of ma-
mmals: six layers, several types of neurons with different parameters
of the Izhikevich neuron model, different quantity and distribution in
layers, as well as different distribution of synapses from other neurons.

2. To design and create one simple model of the AC and design and run several
experiments on this model (using the developed simulator) in order to test
and describe basic features of the model.

The model was consulted with Mgr. Ondřej Novák and MUDr. Ondřej Zelen-
ka, neuroscientists from Institute of Experimental Medicine AS CR, the Depart-
ment of Auditory Neuroscience. In the rest of the thesis, by personal communi-
cation with neuroscientists, we mean them.

The text of the thesis is divided into four main parts:

1. Introductory:

• Chapter 1 provides a brief introduction to neurobiology and neuros-
cientific modelling

2. Simulator-related:

• Chapter 2 reviews other software tools for neuroscientific modelling

• Chapter 3 describes the simulator developed in this thesis

• Chapter 4 describes validation tests and performance of the simulator

3. Model-related:

• Chapter 5 provides an introduction to the auditory system and espe-
cially the AC

7

• Chapter 6 presents a motivation for a model of the AC, reviews existing
AC models and their limitations, and states the main features of the
model designed in this thesis

• Chapter 7 describes the model of the AC designed in this thesis

• Chapter 8 contains evaluation of the model: performed experiments,
their results and discussion of these results

• Chapter 9 summarizes the main features of the model, compares it to
other existing models, and suggests possible future works related to
the model

4. Concluding:

• Chapter 10 concludes the whole thesis and its achievements

We should note that although the main use of the simulator should be models
of the AC, there was an effort to develop the simulator universal enough to allow
creating general models, not only AC models. Therefore the chapters related to
the simulator are separated from and even precede the chapters related to the
model.

8

1. Introduction to Neurobiology
and Computational Neuroscience

Computational neuroscience has become a very popular field over the past de-
cades. Many books have been written about this topic. A suitable introduction
can be found for example in (Dayan et al., 2001; Gerstner and Kistler, 2002;
Trappenberg, 2010; Schutter, 2010). It would be futile to try to repeat such an
introduction in this text. Instead, this chapter provides a brief summary of the
basics of neurobiology and it puts the used computational methods into a broader
context of the computational neuroscience.

There is a wide array of approaches to computational modelling. Some of
them focus on microscopically precise features, while others use number of sim-
plifications and high degree of abstraction, which allows computing large-scale
systems over long period of time. It is impossible to have a model which is both
perfectly plausible1 and computationally cheap. If we want to model a large sys-
tem, we have to decide which parts of the system will be simplified. Interestingly,
although the number of neurons in mammal’s brain reaches values in the order of
billions (109) (Herculano-Houzel, 2009), even models with thousands of neurons
are considered large-scale (e.g., a barrel cortical model by (Phoka et al., 2012).
In recent years, ambitious projects such as the Blue Brain Project (Markram,
2006), the Spaun project (Eliasmith et al., 2012), the Cognitive Computation
Project (Ananthanarayanan et al., 2009), and others (Izhikevich and Edelman,
2008) have appeared with the goal of building biologically accurate model of the
entire brain. Although their results are respectable, we still cannot say that mo-
delling human brain is a solved problem2. Moreover, a more detailed model is not
necessarily superior, because a simpler model can be easier to analyse (Schutter,
2010; Dayan et al., 2001).

The rest of the chapter briefly describes fundamental overview of neurobiology
(based on (Brodal, 2010; Bear et al., 2007)), basic approaches to neuroscientific
modelling and somewhat more detailed description of the spiking neuron models,
the class of models, which we use in this thesis.

1.1 Brief overview of neurobiology

Before we start with the overview, we would like to mention that goal of this
section is to provide just a basic grasp of the principle and established knowledge
from neurobiology. Naturally, none of these facts are so simple in reality and
moreover a great part of reality remains unclear. However, the aim of this section
is not to describe the most recent discoveries, but only basic knowledge, even
though exceptions may exist, in some cases.

The core of the information transmission in the brain is mediated by neurons,
excitable cells which are able to generate electrical signals in response to chemical
and electrical inputs, and transmit the signals to other cells (see Figure 1.1). These

1Already the idea of having a perfectly plausible model is, in most cases, impossible and we
must be aware of the fact, that a model is always just an abstraction of the reality.

2It is a rather philosophical question if this will be ever possible.

9

Figure 1.1: A diagram of a neuron cell. From (wikipedia.org, 2007b).

signals are called action potentials (or nerve impulses or, more simply, spikes). The
action potential is a brief change of the membrane potential, caused by opening
of channels that allow Na+ ions to enter the neuron, followed by an outward flow
of K+ ions. A spike arises in the axon hillock, the initial segment of the axon
(a long protrusion of the neuronal cell), where the density of voltage-gated Na+

channels is higher than in the rest of the neuron membrane. Subsequently, the
action potential is propagated along the axon, to the terminal branches of the
axon, called boutons. The bouton lies close to the surface membrane of another
neuron cell (its dendrite, soma, or even axon) and the site of this contact is called
a synapse (see Figure 1.2).

Figure 1.2: A diagram of a synapse. From (wikipedia.org, 2006).

The majority of synapses between neurons are chemical synapses. The other
type, electrical synapses, called gap junctions occur infrequently among neurons

10

(Brodal, 2010) and therefore we do not discuss them in this text. The signal
transfer at a chemical synapse starts when an action potential reaches the bou-
ton of the presynaptic neuron. It depolarizes the bouton, which leads to opening
Ca2+ channels, enabling Ca2+ ions to enter the bouton. The increased concen-
tration of intracellular Ca2+ causes a release of neurotransmitter from synaptic
vesicles to the synaptic cleft, a narrow space between presynaptic and postsy-
naptic neuron. The released neurotransmitter briefly binds to receptors of the
postsynaptic membrane, which causes a change of the postsynaptic membrane
potential, called postsynaptic potential (PSP). If the synaptic potential depola-
rizes the postsynaptic cell (usually by opening cation channels allowing Na+ to
enter and K+ to leave the cell), it is called an excitatory postsynaptic potential
(EPSP) and it increases the probability that the postsynaptic neuron will fire
an action potential. If the synaptic potential hyperpolarizes the postsynaptic cell
(usually by opening channels allowing Cl− to enter or K+ to leave the cell), it
is called an inhibitory postsynaptic potential (IPSP) and it decreases the proba-
bility that the postsynaptic neuron will fire an action potential. The changes in
potential are summated from many synapses and if the membrane is depolarized
to a threshold value, the action potential in the postsynaptic cell is evoked. When
depolarization reaches its maximum value (usually around +30 mV), the repo-
larisation follows (and K+ ions are driven outside the cell). The whole sequence
of depolarization and repolarization lasts 1 to 2 ms (Brodal, 2010). Usually, the
threshold is approximately 10 mV more positive than the resting potential (typi-
cally around −60 mV). The size of one EPSP is usually less than 1 mV (Brodal,
2010). Therefore a summation of several EPSP is needed to reach a threshold for
eliciting an action potential. Otherwise, the membrane potential returns to the
resting value.

If the released neurotransmitter produces an EPSC, we use the terms ex-
citatory synapse and excitatory neurotransmitter (e.g., glutamate, acetylcholin,
aspartate). Analogically, IPSC is caused by an inhibitory neurotransmitter (e.g.,
GABA or glycine) at an inhibitory synapse. Since the majority of neurons release
either excitatory or inhibitory neurotransmitters, it is common (especially be-
tween computational neuroscientists) to simplify the terminology and refer to the
(presynaptic) neurons with excitatory effect as excitatory neurons and to the cells
with inhibitory effect as inhibitory neurons. However, the distinction between ex-
citatory and inhibitory neurotransmitters is not perfect. For example, glutamate
can produce an EPSC when bound to group I mGluRs (metabotropic glutama-
te receptors), whereas binding to group II mGluRs produces an IPSC (Brodal,
2010). This dual effect of glutamate has an essential impact on retinal signal pro-
cessing, where ON bipolar cells are hyperpolarized by glutamate, whereas OFF
bipolar cells are depolarized (Gerber, 2003).

The size of an EPSC and an IPSC is influenced by the synaptic efficacy. The
synaptic efficacy may change over time, making the synapses plastic. Synaptic
plasticity is regarded as a crucial factor in learning and memory (Brodal, 2010;
Martin et al., 2000). We distinguish between short-term plasticity, which lasts
from less than a second to several minutes, and long-term plasticity, which can
last from hours to weeks and even longer.

Short-term plasticity refers to short-term changes of synaptic efficacy in re-
action to a stimulus repeated in brief intervals. While some synapses are enhanced

11

by repeated stimuli, others are depressed. Forms of synaptic enhancement, such as
facilitation, augmentation, and post-tetanic potentiation, are usually attributed
to effects of residual elevation of Ca2+ ions in presynaptic bouton and subsequentl
increased transmitter release. Short-term synaptic depression is usually attributed
to insufficient renewal of the releasable synaptic pool, or feedback activation of
presynaptic receptors, or postsynaptic processes such as receptor desensitization.
More detailed principles and mechanisms of short-term plasticity are discussed
in (Zucker and Regehr, 2002).

Long-term plasticity refers to changes in synaptic efficacy lasting for hours and
more. It is generally supposed that strong activity and synchronization of specific
inputs strengthens the synaptic connections, whereas low activity or desynchro-
nized inputs weakens the synaptic connections. The latter may be interpreted as
noise or unimportant information. It is assumed (Brodal, 2010) that the long-
term potentiation (LTP) is induced by a presynaptic action potential repeatedly
preceding a postsynaptic action potential. In this situation, the presynaptic spi-
ke contributes to the postsynaptic spike; hence the synapse should be enhanced.
On the contrary, when the presynaptic spike arrives after postsynaptic spike, the
information arrives late and the synapse is depressed by the long-term depression
(LTD). Even though these phenomena are opposite, they are both induced by
an increase in intracellular Ca2+. Important role in long-term plasticity is perfor-
med by NMDA (N-methyl-D-aspartate) receptors thanks to higher permeability
to Ca2+ of NMDA-gated ion channels. More about LTP, STP and memory in
general can be found in (Sweatt, 2010).

To sum up this section so far, the information in brain is transmitted among
neurons via action potentials, conducted from a presynaptic neuron along its
axon, through a synapse to dendrite, axon or soma of the postsynaptic neuron,
which may lead to an action potential being fired by the postsynaptic neuron.
The value of PSP evoked in postsynaptic cell is influenced by the synapse ty-
pe and state (such as synapse efficacy, or state of neurotransmitter vesicles).
The action potential is shaped by the neuron type and state (e.g., the preceding
membrane potential value). Although the duration, amplitude and shape of the
action potential may vary, these features generally do not influence the informati-
on transmitted to other neurons (Brodal, 2010; Bear et al., 2007; Dayan et al.,
2001). Therefore, it is called as all-or-none phenomenon. The information is enco-
ded in frequency and pattern of consecutive action potentials. Therefore, from the
computer science point of view, the information transmitted by one neuron can
be characterized as a spike train, a simple list of the times, when spikes occurred.

Further detailed information from the field of neurobiology can be found for
example in (Brodal, 2010; Bear et al., 2007).

1.2 Brief overview of neuroscientific modelling

In the field of computational neuroscience various types and kinds of models can
be found. To facilitate the orientation in the wide array of models, we divide them
into three groups, according the degree of abstraction and precision.

12

1.2.1 Level of Detail in models

1.2.1.1 Low-level models

The first group of models consists of low-level models which model individual mo-
lecules, their movement and reactions. Mathematical background of these models
is based on the chemical equations, into which the modelled molecules enter. Ex-
tensive knowledge of neurotransmitters, receptors, ions, channels, enzymes, and
other chemical structures, which play a role in the nervous system, is utilized
here. Authors of the models consecutively try to compose the chemical compu-
tations that occur at synapses, ion channels, axons, dendrites and neuron somas.
Further reading can be found in (Bower and Bolouri, 2004; Fall, 2005; Schutter,
2010, chap. 3–4).

1.2.1.2 Middle-level models

In the group of middle-level models, the basic units are neurons and synapses
and the transmission of action potential is modelled. Each neuron reacts to the
PSPs from presynaptic neurons in a specific manner. This manner typically me-
ans changing the value of the neuron’s membrane potential in the reaction to
input potential (or input current). The input potential typically consists of the
sum of PSPs (or Post Synaptic Currents (PSCs)) from presynaptic neurons. This
behaviour is called the neuron model and it defines not only the progression of
the membrane potential, but it also defines when the neuron fires a spike.3 The
neuron model can be really simple, such as a test, whether input potential ex-
ceeds a fixed threshold, or much more complicated based on computation of one
or more differential equations (as it is in the well-known Hodgkin-Huxley mo-
del (Hodgkin and Huxley, 1952), which will be described later). One of these
differential equations typically captures the membrane potential course and the
others may capture for instance the fast sodium current INa and delayed potas-
sium rectifier IK mediated by Na+ and K+ ions, respectively. There are many
other features in which these models vary, such as single-compartment models
versus multiple-compartment model. The most important of these features are
described later.

The second elementary units in these intermediate models are synapses. The-
ir behaviour (model) may be again very simple, such as a fixed weight (which
corresponds to a neurobiological term of synaptic efficacy). Or it can be inter-
mediately complicated, such as a weight influenced by the short-term and/or
long-term plasticity. Finally, it can be more complicated, such as modelling syna-
ptic conductance, its changes in time in reaction to synapse type, passing current
and other factors (e.g., plasticity).

Since these middle-level models are widely used in the neuroscientific com-
munity, their description can be found in almost every book dealing with com-
putational neuroscience, such as (Dayan et al., 2001; Gerstner and Kistler, 2002;
Trappenberg, 2010; Schutter, 2010; Izhikevich, 2007). Except really simple mo-
dels, these models are often called “spiking neuron models”. The exception inclu-
des simple and rather artificial models, such as perceptron or back-propagation

3This may be sometimes confusing that the term model sometimes mean behaviour of the
whole network, other times behaviour of a single neuron, or even synapse.

13

neural network (more about them, e.g., in: (Reed and Marks, 1999)). Their ba-
sic units are also neurons and connections between neurons. However these units
resemble the real neurons only remotely, there is not even the membrane poten-
tial modelled and instead of coding information in the frequency and pattern of
spikes, it is usually coded in the magnitude of the transmitted signal. On the
other hand, the purpose of the artificial neural networks is not plausibility, but
the success in machine learning tasks (for more about machine learning, see e.g.,
Alpaydin, 2004).

1.2.1.3 High-level models

The group of high-level models contains models with some kind of high-level abs-
traction. They often work with statistical or mean features and basic units are
typically neuron populations. This group includes firing rate models and populati-
on models, where instead of single neurons, the neuron populations are modelled
by the mean activity. “It is clear that rate models cannot incorporate all aspects of
networks of spiking neurons. However, many of the principles behind information
processing in the brain can be illuminated on the level of population models, and
many of the features of population models have been confirmed with spiking neu-
rons.” (Trappenberg, 2010, pp. 74). In addition to that, for some features, a more
abstract model is more suitable. More information about these high-level models
can be found for instance in (Wilson and Cowan, 1972; Brunel and Wang, 2001;
Trappenberg, 2010, chap. 3).

1.2.1.4 Model group decision

In this thesis, the middle-level approach was chosen, as the golden mean. Com-
pared to the high-level approach, it helps to capture more precisely features of
the network and it allows to research transmission of the information at the level
of single neurons and synapses. In the case of the model of the auditory cor-
tex, it may be useful e.g., for observing tonotopic arrangement (see the Chapter
5), where receptive fields of single neurons are important. On the other hand,
the low-level approach is too detailed and does not allow computing large scale
networks (in the order of at least 104 of neurons).

The next sections contain a description of basic techniques and models of
the spiking neuron networks. That means models of neurons, models of syna-
pses, simulation techniques and other simulation aspects, such as inputs, noise,
or spontaneous activity.

1.2.2 Neuron models

1.2.2.1 The Hodgkin-Huxley model

The model of Alan Hodgkin and Andrew Huxley (Hodgkin and Huxley, 1952)
was based on results of voltage-clamp experiments of ion channels of the squid
giant axon. They characterized the kinetics of the fast sodium current and the
delayed potassium rectifier. The resulting mathematical model was used also as
a verification that the proposed kinetics leads to the plausible action potential
generation.

14

The basic form of the model consists of four non-linear ordinary differential
equations:

C
dV

dt
= −gL(V − EL)− gNam3h(V − ENa)− gKn4(V − EK)

dn

dt
= αn(V)(1− n)− βn(V)n

dm

dt
= αm(V)(1−m)− βm(V)m

dh

dt
= αh(V)(1− h)− βh(V)h

(1.1)

where V is the membrane potential, C is the membrane capacitance, gL is the
maximal value for membrane conductance for the leak current, gNa for the Na+

current and gK for the K+ current, EL, ENa, EK are their respective reversal
potentials given by the Nernst equation. Variable n describes activation of the
potassium channels, m describes activation of the sodium channels, and h descri-
bes deactivation of the sodium channels. Functions αn(V), αm(V), αh(V), βn(V),
βm(V), and βh(V) describe the transition rates between open and closed states of
the channels. They were fitted experimentally and their description can be found
for instance in (Hodgkin and Huxley, 1952; Trappenberg, 2010; Izhikevich, 2007;
Schutter, 2010, chap. 5).

The model reproduces the behaviour of the recorded currents well and its pa-
rameters can be relatively easily obtained from the experimental data. Therefore,
this model is still one of the most important models in computational neuros-
cience. On the other hand, due to the computational cost is its use in large-scale
models very limited. In the rest of the text, the model will be referenced as HH
model.

1.2.2.2 The Leaky Integrate and Fire model

As opposed to the HH model, which aims for maximum plausibility, but leads to
high computational demands, the Leaky Integrate-and-Fire neuron model (La-
picque, 1907; Knight, 1972; Tuckwell, 1988) is computationally cheap, although
much simpler. The model is sometimes referred as I&F, or LIF model (we will
use the latter abbreviation). The origins of the LIF model may be traced to a
model with a simple capacitor circuit, introduced by Louis Lapique already in
1907 as the result of observations of frog nerve stimulation (Brunel and van Ros-
sum, 2007). Presently used form of the model can be described by one linear
differential equation:

C
dV

dt
= −gL(V − EL) + Isyn(t) (1.2)

if (V ≥ Vt) then V ← Vr (1.3)

where V is the membrane potential, C is neuron capacitance, gL is the leak
conductance, EL is the leak (or resting) potential, and Isyn(T) are the synaptic
inputs. When the voltage reaches a threshold Vt, the neuron is said to emit a spike
and the voltage is reset to a reset potential value Vr, after an absolute refractory
period τrp.

15

The model has the following features:

• all-or-none spike: all spikes have an identical size and duration (because the
shape is not modelled),

• well-defined threshold: with the value of Vt,

• reset value of membrane potential after a spike is emitted: with the value
of Vr,

• refractory period: with the value of τrp,

• distinction between excitation and inhibition: excitatory inputs (Isyn(t) >
0) facilitate the firing, while inhibitory inputs (Isyn(t) < 0) do the opposite,

• class 1 excitability (Hodgkin, 1948; Izhikevich, 2007, pp. 218): the neuron
can continuously encode the strength of an input into the frequency of
spiking.

It is probably the simplest model described by a membrane potential variable
with these features. Actually, it should not even be called a spiking model, since
it lacks any spike generation mechanism, where spike means a brief regenerative
depolarization of membrane potential (Izhikevich, 2007). Despite its simplicity
and limited plausibility, it is still widely used in large-scale simulations.

1.2.2.3 The Izhikevich neuron model

Since HH-type models are too computationally demanding and the LIF model
is too simple, many scientists tried to combine the qualities of both types: keep
some nontrivial features of the dynamics of the HH model, as well as keep the
model computationally efficient. This effort led to birth of many models better
or worse combining the opposite demands. One of the most successful results
is the model of spiking neuron by Izhikevich. The model was published first
in 2003 (Izhikevich, 2003) and used e.g., in (Izhikevich, 2004; Izhikevich et al.,
2004b; Izhikevich, 2006). In this text, we call this version the “Original form”.
The second version is from 2007 (Izhikevich, 2007) and in this text, we call the
version as the “Generalized form”. This version was used e.g., in (Izhikevich and
Edelman, 2008).

1.2.2.3.1 Original Form

In 2003, Izhikevich introduced a new model of spiking neuron in the following
form:

dv

dt
= 0.04v2 + 5v + 140− u+ I

du

dt
= a(bv − u)

(1.4)

with the auxiliary after-spike resetting:

if (v ≥ 30mV) then v ← c, u← u+ d (1.5)

16

where v is the membrane potential, u represents a membrane recovery current,
which accounts for the activation of K+ ionic currents and inactivation of Na+

ionic currents and it provides negative feedback to v, I is the sum of synaptic
inputs, and a, b, c, and d are parameters of the model. When v reaches its apex
(+30 mV), the membrane voltage and the recovery variable are reset according
to the 1.5. The value +30 mV is not a threshold, but the peak of the spike. The
threshold value of the model neuron is between −70 mV and −50 mV, and it
is dynamic. The equation 1.4 was fitted so that values of v have mV scale and
values of the time has ms scale.

The Izhikevich model can reproduce various types of neuronal dynamics, such
as regular spiking (RS), intrinsically bursting (IB), and chattering (CH), the
main excitatory cortical neuron classes (Connors and Gutnick, 1990; Gray and
McCormick, 1996), or fast spiking (FS), and low-threshold spiking (LTS)), the
main inhibitory cortical neuron classes (Gibson et al., 1999). Possible parameters
for these types are listed in the Table 1.1.

RS FS LTS

vp 30 30 30
a 0.02 0.1 0.02
b 0.2 0.2 0.25
c -65 -65 -65
d 8 2 2

Table 1.1: Possible values of parameters of the (Izhikevich, 2003) neuron
model for the main cortical neuron classes, based on (Izhikevich, 2003).

This model successfully combines the opposite demands: the biological plausi-
bility and computational efficiency. To compare the main neuron models accor-
ding to these demands, Izhikevich (Izhikevich et al., 2004a) defined two metrics
for the models comparison. The first metric was defined by three factors:

• twenty of the most prominent features of biological spiking neurons,

• ability to exhibit autonomous chaotic activity,

• decision, whether the model has biophysically meaningful and measureable
parameters.

The second metric measured approximate number of floating point operati-
ons (FLOPS), such as addition, or multiplication, needed to simulate the model
during a 1 ms time span. The results (see Figure 1.3 and for more details see (Izhi-
kevich et al., 2004a) showed that at least 15 features of the first metric have only
the following models: HH (Hodgkin and Huxley, 1952), Wilson (Wilson, 1999),
Hindmarsh-Rose (Rose and Hindmarsh, 1989) and Izhikevich (2003). However,
the first three models needed 120 FLOPS (HH needed even 1200 FLOPS), while
Izhikevich (2003) needed only 13 FLOPS. On the contrary, the most efficient mo-
del was the LIF model; however it fulfilled only 3 features of the first metric and
it was not able to exhibit many other fundamental properties. According to this
study, if maximal biological plausibility (and dependence on measurable physi-
ological parameters such as maximal conductances) is needed, the HH model is

17

the best. On the other hand if large-scale network and computational efficiency
and also reasonable plausibility are needed, then the Izhikevich (2003) model is
the best.4

Figure 1.3: Results of the comparison of 11 neuron models, conducted by
Izhikevich et al. (2004a). From (Izhikevich et al., 2004a), c©2004 IEEE, used
with permission.

1.2.2.3.2 Generalized Form

In 2007, Izhikevich published a generalized form of his model:

C
dv

dt
= k(v − vr)(v − vt)− u+ Isyn(t)

du

dt
= a(b(v − vr)− u)

(1.6)

with the auxiliary after-spike resetting:

4At least of the models included in this study using the defined metrics.

18

if (v ≥ vp) then v ← c, u← u+ d (1.7)

where v is the membrane potential, u represents a membrane recovery current,
C is the membrane capacitance, vr is the resting membrane potential, vt is the
instantaneous threshold potential, vp is a spike cutoff value (the peak), Isyn(t) is
the input current, and a, b, c, and d are parameters of the model.

The derivation of the parameter values for various neuron types is described
in (Izhikevich, 2007; Izhikevich and Edelman, 2008). Here, we provide again only
the example values of main cortical neuron classes, in the Table 1.2.

RS FS LTS

C 100 20 100
k 3 1 1
vr -60 -55 -56
vt -50 -40 -42
vp 50 25 40
a 0.01 0.15 0.03
b 5 8 8
c -60 -55 -50
d 400 200 20

Table 1.2: Possible values of parameters of the (Izhikevich, 2007) neuron
model for the main cortical neuron classes, based on (Izhikevich and Edelman,
2008).

There are also many other spiking neuron models, with other advantages, not
reviewed in this text. They can be found in (Dayan et al., 2001; Schutter, 2010;
Trappenberg, 2010). Since the other models are not needed in the rest of the
thesis, we do not mention them in this brief introduction.

1.2.3 Synapse Model

Synaptic connections have typically two main characteristics: (axonal) conducti-
on delay and synaptic efficacy, frequently called synaptic weight. The conduction
delay represents the time needed for signal transmission along the axon (and possi-
bly dendrite of the postsynaptic neuron) and sometimes is simplified as unitary.
Sometimes, also synaptic response delays are modelled (see e.g., (Trappenberg,
2010)), however they are much shorter and therefore often neglected. In the rest
of the text, by delay we will always mean the (axonal) conduction delay.

There are many approaches to modelling a synaptic transmission: the pro-
cess when an action potential from a presynaptic neuron arrives to a synapse
and leads to a postsynaptic potential (PSP) on a postsynaptic neuron. Since the
synaptic connections in the central nervous system are highly diverse (Schutter,
2010, chap. 6) and continually change their properties in several ways, effort to
plausibly model synaptic transmission is a challenging task. In addition to that,
synaptic transmission is a stochastic process (it is considered as an important
source of noise in the nervous system (Schutter, 2010, chap. 6)). Therefore, all

19

computational models of synaptic transmission require some degree of simplifi-
cations and abstractions.

In the simplest model of synaptic transmission the input Isyn(t) of neuron
Npost in tick t may be computed as

Isyn(t) =
∑

i=1,...,k

wsi (1.8)

where s1, . . . , sk are synapses (to neuron Npost), to which an action potential
arrived at tick t, and wsi is the weight of synapse si. This means that, for all
i ∈ 1, . . . , k, presynaptic neuron of the synapse si fired at time t− dsi , where dsi
is the conduction delay of the synapse si.

Both the synaptic weights and conduction delays may be fixed during the
entire simulation (but different between synapses), or changeable (i.e., plastic).
However, the delays and weight are the only two features, which make the syna-
pses different, in this model. The model does not include any specific receptors,
or synaptic types. It also does not internally include any source of noise and it
does not correspond to real synapses in many respects (e.g., changeable behaviour
caused by limited amount of neurotransmitter and sometimes depleted synaptic
vesicles). However (also because neuro-computational modelling requires many
simplifications), it is used in various models (e.g., Izhikevich, 2006; Phoka et al.,
2012).

To achieve a better plausibility, the development of the synaptic conductances
could be modelled. Subsequently, the input Isyn(t) of neuron Npost at tick t is not
a sum of synaptic weights, but PSCs (postsynaptic currents):

Isyn(t) =
∑

i=1,...,k

PSCi (1.9)

where PSCi can be for instance computed as:

PSCi = wsi · gsi(VNpost − Esi)
dgsi
dt

= −gsi
τsi

(1.10)

where wsi is again the weight of the synapse si, gsi is the instantaneous sy-
naptic conductance, Esi is the reversal potential, V is the membrane potential of
the postsynaptic neuron Npost, and τsi is the time constant for the decay of the
synaptic conductance after the neurotransmitter release. This approach enables
to distinguish between different types of synaptic kinetics. For instance, Esi is
typically 0 mV for excitatory synapses and around +80 mV for inhibitory (e.g.,
+70 mV for GABAA receptors and +90 mV for GABAB receptors). Another
difference could be done by different settings of τsi (e.g., small around 5–6 ms
for AMPA and GABAA receptors and bigger around 150 ms for NMDA and
GABAB receptors). This kind of model was used in (Muresan and Savin, 2007;
Izhikevich et al., 2004a; Izhikevich and Edelman, 2008).

Many other and more realistic models of synaptic kinetics can be found in
(Dayan et al., 2001; Schutter, 2010; Trappenberg, 2010).

20

1.2.3.1 Short-term synaptic plasticity

One of the simplest models of the short-term synaptic plasticity defines for each
synapse a scalar factor x, by which the synapse weight is scaled, which leads to
short-term depression and facilitation. The scalar factor x can be modelled by
one-dimensional equation:

dxsi
dt

=
(1− xsi)

τ ′si
xsi ← psixsi when presynaptic neuron fires

(1.11)

where τ ′si is a time constant parameter (typically around 100–200 ms) and psi
is a dimension-less parameter (typically between 0.5–1.5). Each presynaptic spike
resets the value of xsi to the new value psixsi . Subsequently, xsi tends to recover
the equilibrium of value 1, with the time constant τ ′si . Values of psi < 1 lead to the
short-term synaptic depression, whereas values of psi > 1 result in the short-term
synaptic facilitation. The values of τ ′si and psi may be used to distinguish among
different synapse types. This kind of short-term synaptic plasticity was used in
(Izhikevich and Edelman, 2008).

For detailed reviews of short-term synaptic plasticity models see (Morrison
et al., 2008; Schutter, 2010).

1.2.3.2 Long-term synaptic plasticity

A popular form of the long-term synaptic plasticity is the Spike-Timing-Dependent
Plasticity (STDP) (Song et al., 2000). The main idea is that repeated arrivals of
presynaptic spike shortly before the postsynaptic spike lead to long-term potenti-
ation (LTP) of the synapse, whereas a repeated spike arrival after the postsynaptic
spike leads to long-term depression (LTD). This basic idea may be implemented in
many ways. We only describe the way used in the rest of the thesis. See (Sjöström
and Gerstner, 2010; Schutter, 2010; Song et al., 2000) for other possibilities.

The original form of STDP describes the amount of synaptic modification F
(a value, which is added to the synaptic weight) in dependence on the time ∆t
between presynaptic spike arrival and postsynaptic spike. This value is computed
as:

F (∆t) =

{
A+ · e∆t/τ+ if ∆t < 0 { LTP part }
−A− · e−∆t/τ− if ∆t > 0 { LTD part }

where τ+ and τ− are time constant parameters (typically around 20ms) and
parameters A+ and A+ determine the maximum amounts of synaptic modificati-
on, which occur when ∆t is close to zero.

1.2.4 Multi-compartmental models

In this thesis, we deal only with single-compartmental models – models that de-
scribe the membrane potential of a neuron by a single variable (Dayan et al.,
2001). The multi-compartmental models include the conductance properties and
physical shape of the neuron, especially of its dendrites. More about multi-
compartmental models can be found in (Dayan et al., 2001; Schutter, 2010;

21

Trappenberg, 2010) and an example of multi-compartmental model based on
Izhikevich neuron model can be found in (Izhikevich and Edelman, 2008).

1.2.5 Simulation techniques

The techniques of neural network simulation may be divided into two groups:
clock-driven (also called synchronous) and event-driven (also called asynchro-
nous). In the clock-driven algorithm, all neurons are updated at every tick of a
clock, whereas in event driven algorithms neurons are updated only when they
receive or emit a spike. Well-arranged review of these techniques and usage in
various simulators can be found in (Brette et al., 2007). In the following text, we
describe the main features of both techniques.

1.2.5.1 Clock-driven approach

The main advantage of clock-driven approach is that it is flexible and easy to
implement for any model. A typical implementation has the structure described
in Pseudocode 1.1.

1. For each tick t:

(a) For each neuron, test the spike condition and possibly

send a spike {spikes detection}
(b) For each neuron, process spikes that arrived in this

tick {spikes processing}
(c) Update state variables of all neurons (and possibly

synapses) {state updates}

Pseudocode 1.1: Typical structure of a clock-driven simulation.

The spike condition (1a) has typically a form of (v > vt), where v is a neuron’s
membrane potential and vt is a constant threshold value (a parameter specific for
the neuron’s type).

Sending (1a) and processing spikes (1b) may be done via a simple calendar in
the form of a circular array (Morrison et al., 2005). This is an array of MAX DELAY

bins, where MAX DELAY is a maximal conduction delay. Each bin contains a list of
“synaptic events” (identifiers of synapses). When neuron Npre emits a spike at tick
t, we insert a synaptic event for all the synapse connections leading from neuron
Npre into the calendar. The position in the circular array for a synapse with delay
d is calculated as (p+ d) mod MAX DELAY, where p is the present position (t mod
MAX DELAY). Subsequent spike processing (1b) is as simple as to go through the
bin corresponding to the current tick and for each synapse s in this bin, process
the spike, which arrived in this tick through synapse s, e.g., add the weight of
the synapse s to the input of the postsynaptic neuron. When all synaptic events
from the bin are processed, the bin is cleared.

22

The last step of the algorithm (1c) consists of update of all state variables,
i.e., changing state variable X(t) to X(t + dt), where dt is the duration of one
simulation tick. The difference can be computed using Euler or Runge-Kutta
(Press et al., 2007) integration methods.

Using a circular array for spikes processing is both easy to implement and
effective solution. Important fact is that inserting a synaptic event into this data
structure has a constant time complexity (e.g., adding an element to the start of
the linked list) and removing all synaptic events from one bin has a complexity
O(n), where n is the number of the elements in the bin. Therefore, from the point
of view of asymptotic time complexity, this implementation of the clock-driven
algorithm is the best one, if nontrivial conduction delays are needed.

The main disadvantage of the clock-driven approach is the possible loss of
precision. First, the spike timings are aligned to a grid (ticks of the clock). Second,
the spike conditions are checked only at the ticks of the clock, implying that some
spikes might be missed. Both drawbacks can be moderated by a shorter clock tick,
which, on the other hand, decelerates the computation. The exact form of the
clock-driven simulation may be reached using a priority queue (e.g., “calendar
queue” by (Brown, 1988)) and storing the exact times of spikes and synaptic
events. This approach is a sort of hybrid between clock-driven and event-driven
approach.

1.2.5.2 Event-driven approach

The event-driven approach does not use any discrete time ticks and updates
the variable states only when spikes are emitted or received. This brings two
main advantages. First, the spike timings are computed exactly. Second, it may
lead to higher computational speed, because only active changes (when a spike
is emitted or received) are computed, instead of many small updates for every
neuron in every tick as it is in the clock-driven approach. The second advantage
takes place especially in the case of a small number of synaptic events (e.g., in
sparse networks with low mean firing rate).

This approach requires two main features from the model. First, we must be
able to calculate the neuron state at any given time (i.e., we need the explicit
solution of the differential equations). Second, if the synaptic interactions are not
instantaneous, we need the function that maps the current state of the neuron to
the timing of the next spike (possibly +∞ if there is none). These demands make
the asynchronous approach very inflexible. Generally, only simple models (such
as LIF) can be used in combination with event-driven approach. In addition
to that, the implementation may be much more complex than in the previous
approach. Here, we need to store events and their times in some kind of priority
queue, such as binary heap, Fibonacci heap (Cormen et al., 2001), calendar queue
(Brown, 1988), etc. The stored events are not only synaptic events as in the
former approach, but also spike events. Moreover, each spike or synaptic event
can influence the other planned events. They must be recalculated and possibly
moved inside the priority queue. Overall, the queue management is not only
difficult to implement, but may be also time consuming, which can reduce the
computational advantage of this approach.

23

1.2.6 Inputs, heterogeneity, noise and spontaneous activi-
ty

Besides the dynamics of neurons and synaptic transmissions, precise structure
of connections between neurons and other already mentioned network features,
there are many other important features of a network model. We shall mention at
least four of them: inputs, network heterogeneity, noise and spontaneous activity.

According to the purpose of the network model, various kinds of external
inputs are used. The external inputs can represent inputs from parts of the central
nervous system, which are not modelled, or a current injected by an electrode.
All these inputs are usually simply added to the internal inputs from synapses
(variable Isyn).

Biological diversity leads to almost never deterministic and homogenous sys-
tems. Since models of neural networks are typically based on uniform templates of
neurons and synapses, it is important to introduce heterogeneity in them (Schut-
ter, 2010, chap. 13). It can help to prevent deadlocks (due to disturbed symmetry)
and it extends the processing capacity (Eliasmith and Anderson, 2003). This he-
terogeneity may be introduced by stochastic connectivity, variations in neuronal
model parameters or randomization of synaptic weights. Alternatively, the hete-
rogeneity can be reached by an external noise. Noise can be part of the inputs, or
can be implemented using stochastic spike threshold instead of fixed one (Jolivet
et al., 2006).

External noise added to inputs can also help the emergence of the spontane-
ous activity, which is a phenomenon observed in real neocortical networks. It is
defined as ongoing dynamics that is not triggered by external events (Arieli et al.,
1995; Muresan and Savin, 2007). We discuss the possible solutions of introducing
spontaneous activity into a model in the Section 3.5.5. The main reason why it
is not reviewed already in this chapter is that this topic is not so well researched
and we did not consider it as the part of the fundamentals of the computational
neuroscience. However, it is very interesting and important factor.

1.3 Concluding remarks

The chapter is concluded by the summary of the main elements of the process of
creating a computational model of neuronal network.

1. Definition of model purpose

(a) The model should be created with a specific intent, such as biological
hypothesis, verification of a conceptual model, test of the “what if”
questions, which are difficult or impossible to test in the real network,
etc.

2. Choice of a model and a simulator

(a) This step is highly dependent on the previous step. The authors of
the model should decide what contrasting features of the model are
the most important: plausibility (on the level of molecules, or neu-
rons with properly modelled ion channels and synapses with properly

24

modelled synaptic conductance, neurotransmitters and receptors, or
point neurons, or neuron populations, etc.), precision (e.g., short time
ticks in the clock-driven simulation), or computational efficiency, which
allows to model large-scale networks and compute long experiments.

3. Setting model parameters

(a) The authors should consider the following features:

i. Neuron types and for each of them the neuron model parameters
settings

A. The typical neuron types (classes) are well described and many
models suggest how to set their parameters for specific neuron
types.

ii. Synapse types and, for each of them, the synapse model parame-
ters settings

A. The basic synapse types are also well described and recom-
mendations to their parameter settings exist.

iii. Neuron numbers and arrangement in the network according to
their type

A. Numbers of neurons of specific neuron types may be acqui-
red from published literature for many parts of the nervous
system and many species. However, acquirement of the arran-
gement of many neurons in large parts of the nervous system
(and especially brain) is still difficult. In addition to that, less
numerous neuron types (e.g., some inhibitory types) are often
difficult to observe (Wu et al., 2011). Then a stochastic and
approximate approach is needed.

iv. Network connectome, i.e., complete description of the connections
between neurons (including the synapse parameters)

A. Obtaining neuron connectome is difficult. The in vivo tech-
niques are generally constrained to some areas (e.g., super-
ficial layers of brain), or limited in number of neurons and
variety of neuron classes which may be observed. The data
obtained in vitro are morphologically incomplete, owing to
the slicing of the brain, and need additional heuristic recon-
structions (Schutter, 2010, chap. 9).

v. Network inputs and noise

vi. Other sources of the spontaneous activity

vii. Initial settings of all parameters + rules of their dynamics (they
are typically determined by the neuron and synapse models)

viii. Network outputs, i.e., what variables are monitored for the (typi-
cally retrograde) analysis

A. This should be selected according to observed real data, with
which we can the model results compare

4. Model validation

25

(a) This can include the validation of the static features (such as verifi-
cation, that the resulting structure and scaling of the network is rea-
sonable) and dynamic features. The latter is much more complex and
it may be very difficult to propose a suitable set of validation expe-
riments and metrics and especially perform a proper analysis of the
results and explain the reasons of the negative results. Some advices
to model validation may be found in (Schutter, 2010, chap. 13).

5. Proposition of experiments

(a) After the model validation, other experiments may be designed and
run. This part is dependent of the purpose of the model. The experi-
ments run on the model (and therefore called in silico experiments)
may have a structure similar to the experiments in vivo or in vitro.

6. Analysis of experiments

(a) This part has similar pitfalls as the analysis of the model validation.
Ideal analysis of experiments contains not only the results, but also
suggestions of the reasons for the results. This may be very difficult in
large networks with complex dynamics, where many opposite factors
are present, such as excitation and inhibition, short-term facilitation
and short-term depression, long-term potentiation and long-term de-
pression and many others.

The whole process is demanding but also challenging in many aspects. It requi-
res solid background and knowledge from mathematics, biology, neuroscience, and
computer science. It is a quickly developing field which requires knowledge of bo-
th old (older than 5 years) and new (up to 5 years) findings and publications.
The whole modelling process is time consuming both for the modellers, and for
hardware. As (Schutter, 2010) said: “A common misconception is that a mode-
ling project can be achieved quickly, which is almost never the case. Therefore
the experiment-modeling cycle is best implemented as a team effort with close
interaction of all partners.” (Schutter, 2010, pp. xi).

26

2. Simulator: Requirements and
Related Works

This chapter defines the requirements on the simulator, reviews related works
and explains reasons for developing a new simulator software.

2.1 Requirements

Before listing the overall requirements on the simulator, we will briefly describe
the choice of neuron model. We had the following requirements on the neuron
model:

1. Reasonable plausibility (however, single-compartmental model is sufficient).

2. Computational efficiency, which will allow simulating a network with thou-
sands of neurons in experiments lasting minutes to hours of model time.

3. Possibility of different behaviour according to the neuron type, such as RS,
FS, or LTS neuron types.

Due to the reasons described in the Section 1.2.2.3, we chose to use the Izhi-
kevich neuron model, because it fulfils all the requirements and to our knowledge,
there is not any other model which would better satisfy these requirements. In the
concrete, we chose the generalized form, because it is newer (also the Izhikevich
has since then used the generalized form), and it allows for more flexible settings.

In the rest of the section we will list the requirements on the simulation
software. We divided them into two groups: requirements based on needs of the
AC model and requirements of other simulator features and control. The reasons
for the first group of requirements are in detail explained in the model part of
the thesis, in the Section 6.3. The requirements based on the model needs are:

(R1) The generalized form of the Izhikevich neuron model.

(R2) Synaptic connections with specified synaptic conduction delays and chan-
geable weights, formed by the long-term plasticity, e.g., STDP.

(R3) Sufficient computational precision.

(R4) Sufficient flexibility in network structure definition: e.g., different proba-
bilities of synaptic connections between specific neuron types in specific
dependence on distance ((Izhikevich and Edelman, 2008, for instance as it
is in).

(R5) Sufficient flexibility in inputs definition: e.g., each tick different neurons will
be stimulated with a value specified for each neuron.

(R6) A mechanism that would lead to spontaneous activity.

The requirements, which do not concern the model, but rather features and
control of the simulator, are:

27

(R7) Sufficient tools for simulation analysis, i.e., at least:

1. Analysis of spike trains (spike times raster plot, development of mean
activity of neurons of the same neuron type, etc.).

2. Analysis of synaptic weights (development of mean weights over time).

3. Analysis of oscillations and synchronicity (e.g., to measure presence of
waves).

4. Visualisation of the network activity, preferably in 3D view (spikes,
membrane potential of neurons, etc.).

(R8) Practical (user-friendly) settings of the model and experiment definition
with a possibility of automatic batch processing of several experiments.

(R9) Effective implementation of the whole simulation, preferably with a possi-
bility of parallel computing.

(R10) In the case that an existing framework does not fulfil all the previous requi-
rements as built-in features, then the framework must be easily extensible
and allow implementing these features. This means that the framework
must be well documented, with transparent and well-arranged code.

(R11) The framework should run on Windows.

In the rest of this chapter, we will refer to these requirements as R1–R11.

2.2 Related Works

Initially, we searched for an existing tool, which would fulfil all of our require-
ments. During the last twenty years, a large number of neuronal simulators were
developed. We provide here just the basic description. For more details, see either
the relevant publications, or the following reviews: (Schutter, 2010; Brette et al.,
2007).

The best known and most traditional group contains large simulation envi-
ronments with general use, but with primary focus on the HH neuron types:
NEURON (Hines and Carnevale, 1997, 2001), GENESIS (Bower et al., 1998;
Bower and Beeman, 2007), SNNAP (Ziv et al., 1994; Baxter and Byrne, 2007),
and neuroConstruct (Gleeson et al., 2007), which also allows generating models
with runnable in NEURON or GENESIS.

Another group contains tools oriented more on single-compartment and point
neuron models, with specific focus on computational efficiency through distribu-
ted computing: NEST (Morrison et al., 2007), CSIM (Natschläger et al., 2003)
and its parallel version PCSIM (Pecevski et al., 2009), and NCS (Brette et al.,
2007).

Tool specialized for efficient simulations of large-scale multi-compartmental
models based on HH formalism, SPLIT (Hammarlund and Ekeberg, 1998), is
rather a pure, generic neural simulation kernel, without support for analysis of
results, or graphical interface.

28

Simulation framework Mvaspike (Rochel et al., 2003) is exceptional for its
event-driven approach (advantages and disadvantages of event-based modelling
are reviewed in (Brette et al., 2007)).

There are also smaller simulators specializing in efficient simulations of ne-
tworks with Izhikevich neurons: GPU-SNN (Nageswaran et al., 2009), NeMo (Fi-
djeland and Shanahan, 2010), and Neocortex (Mureşan and Ignat, 2004).

A large range of tools with more general use exist. For instance XPAUT
(Ermentrout, 2004) is a general numerical tool for simulating, animating, and
analysing dynamical systems. Rather than pure simulator, it is a tool for un-
derstanding the dynamical systems. Another tools focus on related domains of
applicability: systems biology (Catacomb (Cannon et al., 2003), MOOSE), bio-
chemical and generally molecular reactions (E-Cell (Tomita et al., 1999), MesoRD
(Elf and Ehrenberg, 2004), STEPS, StochSim (Le Novere and Shimizu, 2001)),
movements and reactions of molecules within and between cells (MCell (Stiles
and Bartol, 2001)), biochemical signalling networks (Kinetkit (Bhalla, 2002)). A
review of these tools can be found in (Schutter, 2010).

Finally, a relatively new simulator, Brian (Goodman and Brette, 2008, 2009;
Brette et al., 2007), is written in Python, focused on minimising user’s learning
and development time rather than simulation time.

2.3 Discussion

The first group of simulators (NEURON, GENESIS, SNNAP, and neuroCon-
struct) focuses on HH neuron types, which was not our aim. Many features (R1,
R4–R7) would need additional programing and extending the original framework,
which would be difficult and time consuming; which means that these simulators
do not ideally fulfil R8 and R10.

The second group of simulators contains the most promising ones, except NCS,
which does not provide any Izhikevich neuron model. Both NEST and PCSIM
(the parallel version of CSIM) provide many features, computational efficiency
and make an impression of well organised projects. However, neither of them
is being developed for Windows, which makes them very difficult to run under
Windows with no guarantee of smooth running (PCSIM “was not tested under
Windows” (Pecevski, 2008) and “it is difficult to compile NEST natively under
Windows” (Initiative, 2013)). In addition to that, neither of them contains built-in
generalized form of the Izhikevich neuron model. To summarize our observations,
they have problems with requirements R1, R11 (and possibly also R4–R6 and
R10).

The SPLIT simulator would need many extensions (e.g., due to R7) and most
importantly it does not fulfil requirements R2 and R11.

The Mvaspike simulator does not fulfil R9 and R11.
The group of smaller simulators focusing on Izhikevich neuron model are close

to our aims. However, although they achieve high speed of simulation, for example
by using Graphics Processing Units (GPUs), none of them supports the genera-
lized form of Izhikevich neuron model and are not easily suitable for extensions.
The Neocortex Neural Simulator does not seem to have a sufficient support and
freely available codes and therefore does not fulfil R8 and R10. GNU-SNN and
NeMo may lead to insufficient precision due to single-precision floating point ari-

29

thmetic (Nageswaran et al., 2009; Fidjeland and Shanahan, 2010) and therefore
may not fulfil R3. In addition to that due to specialized low-level enhancements,
the extensibility of these frameworks may be rather demanding, or even impossi-
ble, and therefore they fail to meet R10.

The penultimate group simulation frameworks does not focus on spiking neu-
ral networks and thus does not fulfil, among others, R1 and R2.

The last simulator, Brian, is focused on user-friendly control via Python scrip-
ting language. The whole project is well arranged and contains many tutorials.
In addition to that, after the general research of existing simulators we asked
Dr. Eugene Izhikevich, whether he knows any existing tool supporting his neuron
model that would fit our usage, and he recommended us Brian. However, since
the simulator is written in Python and does not focus on performance so much,
we considered necessary to test the performance in the use with typical features
of our network. We decided to test it on network from (Izhikevich, 2006) with
Izhikevich neuron model, STDP and conduction delays. (The tested network was
exactly the network described in (Izhikevich, 2006).) Besides an implementation
in Brian, we used the original implementation in Matlab and C++ provided by
Izhikevich (2006) and implemented the same in Java.

The results are summarized in the Table 2.1. The fastest implementations
were in C++ and Java. Brian was ten times slower and Matlab even seventy
times slower. According to personal communication with the authors of Brian, we
verified that the lack of speed was not caused by incorrect usage of the simulator,
or by mistakes in formulation of the model. The difference between running an
experiment for one day versus ten days (or even more than two months) is so
considerable, that we decided to use neither Brian, nor Matlab. The difference
between C++ and Java was relatively negligible.

Brian Matlab C++ Java

90s 510s 7.3s 6.9s

Table 2.1: The results of the performance of four implementations of the
network with Izhikevich neuron model, synaptic delays, and STDP. Duration
was averaged over several measurements (the differences between tests were
negligible).

2.4 Outcome

In conclusion, none of the researched simulators fulfils all the requirements. Some
of the simulators may be possibly used after large extensions. However, extending
a software requires good knowledge of the software and all used languages (also
the special scripting languages developed by the software’s authors). Misunder-
standing the code may lead to errors, which are difficult to trace and debug.

However, our aim was relatively narrow (we did not need a general and all-
round framework with a wide range of neuron and synapse models) and therefore
we considered developing a new simulator instead of extending an existing one to
be the best solution.

For the simulator language, we chose Java for the following reasons: code
transparency, speed of development, performance (based on the test described in

30

the previous section), excellent IDE support (e.g., Netbeans IDE (Oracle, 2013))
and personal preferences.

We developed the whole simulator in Java, except the analytical part. For
the analysis of results, we used combination of Java and Matlab; the reasons are
listed in the Section 3.6.1.2.

31

3. Simulator: Methods

This chapter describes the software part of the thesis: the simulator SUSNOIMAC
(Simulator Using Spiking Neurons Originally Intended for Modelling Auditory
Cortex). Although the main domain of the simulator should be models of the AC
(one possible model is described in the Chapter 7), we designed the simulator
independently on the auditory features. Thereby, this chapter does not include
anything auditory specific with two exceptions. First, there are occasional exam-
ples of auditory motivation for some simulator functionality. Second, the Section
3.6 contains the description of the analytical module which may be used for the
analysis of both general features and auditory specific features.

The description of the simulator starts with the high-level aspects, such as
design and architecture, proceeds to low-level aspects, such as individual modules
and used algorithms. The whole chapter follows a uniform structure: when more
solutions of a particular sub-problem are possible, we first describe the possible
solutions, then discuss their advantages and disadvantages, and finally state the
chosen solution. Although it makes the text slightly less flowing, we chose it due
to lucidity of the explanations of the chosen solutions.

3.1 Language of model definition

3.1.1 Language of model definition: possible choices

The high-level design of the simulator architecture is fundamentally influenced
by the relation of the model and the computational part of the simulator. Before
describing the possible relations, we should clarify the meaning of the term “mo-
del”. In the general meaning (in neuroscientific computational modelling), the
model should define:

• the structure of the modelled network: the neurons, their locations and
possibly the neuron types (or populations), and the connectivity (synapses)
between neurons

• the dynamics of neurons and synapses: the used neuronal models and their
parameters for individual neuron and synapse types

• the inputs: the external stimuli, which do not emerge from the network
dynamics (and eventually also the network outputs)

The dynamics can be obviously only such that is supported by the simulator,
in contrast to the network structure and inputs, which can be typically much
more independent of the simulator. For our models, we did not have demands
on diversity of dynamics: just one model of neurons (the generalized Izhikevich
neuron model (Izhikevich, 2007; Izhikevich and Edelman, 2008)) and simple model
of synapses (Izhikevich, 2006), where each synapse has its delay and weight, which
is adjusted by the STDP long-term plasticity. Since these properties are the same
for all of our models, we will use the meaning of the model in the rest of the
thesis as:

32

• the network structure (and parameters related to it)

• parameters of the simulation (this includes also parameters of STDP)

• the inputs (and parameters related to it)

It is generally considered that a model description (or definition) and the
computational core of the simulator should be separated. However, the approaches
to how and where to define the model, are different. Here is the list of the most
typical solutions:

1. XML-based declarative standard, such as NetworkML, which is part of the
NeuroML project (Goddard et al., 2001; Gleeson et al., 2008).

2. Imperative scripting language, such as PyNN (Davison et al., 2008) written
in Python.

3. Custom plain-text format, such as CSV (comma-separated values) used for
numerical parameters organised into tables.

4. Custom scripting language – for example NEURON uses Hoc and NMODL
(Carnevale and Hines, 2006), NEST uses SLI (Gewaltig and Diesmann,
2007), and GENESIS uses different language SLI (Bower et al., 1998).

5. Model definition written in the language of the simulator.

The advantages and disadvantages are summarized in the Table 3.1. We can
divide the solutions according to their approach: declarative and imperative (or
programmatic). The declarative approach is typically simpler and leads to well de-
fined behaviour. On the other hand, it has limited flexibility for defining complex
networks (such as complexly defined connectivity, which works with probabili-
ty – an example is our AC model in the Chapter 7. We knew that our model’s
definition needs to be more complex than this declarative approach enables.

The opposite approach is imperative, using a scripting or compiled language.
This solution is certainly more flexible and complex. A disadvantage common for
all solutions of this approach is the need to learn the language. Therefore it is
more practical to use an existing and used language by users. The scripting lan-
guages (such as Python) seem to be suitable for this task. Their code is compact
and usually pretty comprehensible. On the other hand, if the whole simulator is
written in a scripting language, the speed performance of the simulator may be
limited. If the simulator is written in another language, the whole framework is
less uniform and needs connecting the both languages (however, this is common
practise in bigger SW frameworks).

3.1.2 Language of model definition: outcome

For our simulator, we decided to use combination of the fifth and the third so-
lution. The models are therefore also defined in Java. However, their numerical
parameters are loaded from plain-text files: properties and CSV files. This so-
lution is simple, easy for development and testing, uniform, easy to extend and
well sufficient for our aims. However, implementation of some commonly used
standard (be it declarative or imperative approach) could be a meaningful future
work.

33

No. Name approach example Pros cons

1 XML-
based
standard

declarative NeuroML simplicity, well-
defined behavi-
our, compatibili-
ty between simu-
lators

limited flexibili-
ty and expressi-
ve power

2 existing
scripting
language

imperative PyNN flexibility,
compatibili-
ty between
simulators

need to learn the
language

3 custom
plain-text
format

declarative CSV simplicity limited flexibili-
ty and expressi-
ve power

4 custom
scripting
language

imperative NMODL,
SLI

flexibility need to learn
the language,
incompatibi-
lity between
simulators

5 language
of the
simulator

imperative Java high flexibility,
uniformity, easy
to write and
understand for
programmers

need to learn
the language,
incompatibi-
lity between
simulators

Table 3.1: A comparison of different approaches to the model definition.

3.2 Architecture design

3.2.1 Architecture design: possible choices

The main parts of the simulator may be divided into Simulation Core (the com-
putational part) and three model parts: Network, Inputs and Analysis; see Figure
3.1. There are three main possibilities, how to implement the relation between
Simulation Core and model parts in Java:

1. Using hard-coded classes with the model definition, where only possibility of
using another model with the simulator is to change either these hard-coded
classes, or the simulator classes.

2. Using one or more interfaces, which define the compulsory methods of the
model.

3. Using abstract classes, which define the compulsory methods and data
structures of the model.

3.2.2 Architecture design: discussion of possible choices

The first solution is unequivocally the least structured, flexible and usable. The
second and third solutions are relatively similar to each other. Using interface

34

Figure 3.1: The high-level structure of the architecture design of the simulator.

instead of abstract classes is useful in those cases when a class would need to
have more parent classes (i.e., be derived from more ancestors), in that case it
can easily just implement more interfaces. On the other hand, abstract classes
can contain fields that are not static and final, and they can contain implemented
methods. Since we do not need extending multiple classes, but we can utilize the
inherited data structures, we chose the third solution.

3.2.3 Architecture design: outcome: Hierarchical-modular
architecture

The architecture of the SUSNOIMAC tool consists of four modules: the simulati-
on core, the network module, the input module, and the analysis module. The
simulation core provides the main simulating work, implementation of neuronal
model and synapse dynamics, etc. It uses the network defined in the network
module and inputs defined in the input module. During the simulation, specific
values can be monitored and stored for the backward analysis, which is provided
by the analysis module.

We can compare the architecture to the structure of the onion (see Figure 3.2):
the simulation core of the simulator corresponds to the core of the onion. The
surrounding layer of the core contains three abstract modules: network, inputs,
and analysis module. In these abstract classes, it is defined, which data structures
and methods must the concrete modules provide. The concrete modules (which
extend the abstract ones) are in the peripheral layer. Each of them can use other
own classes, methods and data structures.

This architecture provides an excellent flexibility in defining the model (such
as using specific random generators, or complex conditions and algorithms in
network generating). At the same time, the code of the model is strictly separated
from the simulator code.

In the rest of this section, the individual modules are described. The section
is concluded by a list of used external libraries.

3.3 Network module

This module contains the entire definition of the neural network structure. The
basic units are neurons and synapses between neurons. The compulsory parts of
the network module are: list of neurons, data structure for the network structure
defined by synaptic connections between neurons and the parameters of these

35

Figure 3.2: The resulting high-level architecture of the SUSNOIMAC simu-
lator. The Simulation Core and Abstract Layer are common for all models. In
the Abstract Layer the abstract classes of the Network and Input Module are
defined. In the Model Specific Layer, their concrete versions are implemented.

connections (we call them simply “synapses”), data structure for the network
inputs, and finally several general attributes of the network. Since we will refer
to these data structures later, it is necessary to describe them somewhat more in
detail.

3.3.1 Neurons and synapses

Each neuron must have the non-dynamic attributes, which are listed in the Table
3.2.

Each neuron has the dynamic variables, which are listed in the Table 3.3.
Although the neurons may be internally arranged in groups, populations, brain

centres, layers, columns and other structures, the abstract network module cap-
tures only two types of these arrangements: layers and neuron types. Neurons
with the same neuronal type may represent one neuron group or population (the
terminology is not consistent in the literature). Neither layers, nor neuronal types
influence the course of simulation; they are just used in the analyses. It is often
useful to see results from neurons of one layer or of a single neuronal type.

Two neurons may be connected by one or more synapses. Each synapse has
the non-dynamic attributes, which are listed in the Table 3.4.

36

name type description

neuronNumber integer unique number
neuronTypeNumber integer identifier of the neuron type
location Location 3D coordinates in the network
layer integer number of the layer, where the

neuron is located
excitatory boolean neuron must be either excitatory,

or inhibitory
Cap, k, vr, vt,

vp, a, b, c, d

double parameters of the Izhikevich neu-
ron model

Table 3.2: The non-dynamic attributes of each neuron. The neurons must be
numbered from 0 to N NEURONS, where N NEURONS is the number of all neurons
and is a general attribute of the network module.

name type description

v double variable of the Izhikevich neuron model
u double variable of the Izhikevich neuron model
LTD double variable of the STDP
LTP array of double variable of the STDP

Table 3.3: The dynamic variables of each neuron. These variables are initiated
in the network module; however their following values are controlled by the
simulation core.

name type description

fromNeuronNumber integer number of the presynaptic neuron
toNeuronNumber integer number of the postsynaptic neuron
delay integer duration of the synapse delay in ms

Table 3.4: The non-dynamic attributes of each synapse. The delay must be a
positive number from the interval 〈0, MAX DELAY〉, where MAX DELAY value is a
general attribute of the network module.

Each synapse has the dynamic variables, which are listed in the Table 3.5.

name type description

weight double the weight of the synapse
weightDerivate double derivation of the weight synapse

Table 3.5: The dynamic variables of each synapse. These variables are ini-
tiated in the network module; however their following values are controlled by
the simulation core.

3.3.2 Data structure for the network structure

The data structure of the network may significantly influence the simulation per-
formance. Therefore we will describe the main possibilities.

37

3.3.2.1 Data structure for the network structure: possible choices

The network can be viewed as the oriented multigraph from the field of graph
theory (e.g., in Matousek and Nesetril, 1998): neurons correspond to vertices
and synapses correspond to edges between vertices. Since we allow more synapses
between one pair of neurons, we call the structure a multigraph, instead of a
graph. If two neurons are connected by a synapse, we call them neighbours.

Effective data structures for storing graphs and multigraphs are well resear-
ched. When a fast access to the neurons’ neighbours is important, the structures
such as adjacency matrix, are unsuitable, because there the access costs O(N),
where N is number of all neurons, instead of O(MX), where M is number of
neighbours of the neuron X. On the contrary, data structures, such as Adjacency
list, or Incidence list, are more suitable.

3.3.2.2 Data structure for the network structure: outcome

Since in simulation a fast access to the neurons’ neighbours is important (during
spike propagation and STDP), we decided to define the network as a list of nei-
ghbours for each neuron. This means that the network module defines successors
of each neuron as a linked list.

3.3.3 Input neurons

Different neurons may be influenced by different input stimuli. This can mean
the stimuli from different brain centres, which are not modelled. It can also mean
noise (of arbitrary meaning). In the auditory cortex, the main inputs are inputs
from thalamus, arranged into bands.

The number and types of these stimuli are defined in the input module.
However, the inputs are tightly related to neurons, because some neurons may
have an external input and others not. Therefore there must be a connection be-
tween input module and network module. This connection is provided by the data
structure of the network module, which for each input type (here called band 1)
contains a linked list of neurons that are stimulated by inputs of this input type.
Thanks to this mechanism, the input module does not need to work with neurons
directly, but only with the input types.

3.3.4 General network attributes

The network must have the non-dynamic attributes, which are listed in the Table
3.6. Except the last two attributes, the values could be also derived from the
other data structures. The MAX DELAY is used in the simulation core (e.g., in the
calendar and STDP implementation). The MAX SYN WEIGHT is also used in the
simulation core to cut the synapse weights, which would overflow this boundary.

1 Although the name is aurally inspired, its usage is totally general and allows defining lists
for input types of arbitrary meaning.

38

name type description

N NEURONS integer number of all neurons
N SYNAPSES integer number of all synapses
N BANDS integer number of all bands (input types)
N LAYERS integer number of all layers
N NEURON TYPES integer number of all neuron types
MAX DELAY integer maximal synaptic delay
MAX SYN WEIGHT double maximal synaptic weight

Table 3.6: The general non-dynamic attributes of the network. There are
several other minor data structures (such as list of neuron types and their
features, or neuron layers and their features), which are not so important, and
they are described in the programmer documentation.

3.4 Input module

Typical network needs some (at least initial) input to stimulate the activity. This
input may lead from sense receptors or other parts of the nervous system. At
the same time, the network may be stimulated by some type of internal input in
the form of organised or random noise to achieve a spontaneous activity of the
network in the absence of external stimuli. This topic is discussed in the Section
3.5.5.

We decided to use a simple solution, which allows all these requirements. In
the network module, lists of neurons of specific input classes are defined. These
classes are internally called “bands”. Subsequently, for each step of the simulation,
one input is defined by the input module. The input must have an INPUT NUMBER

attribute. The meaning of this number is entirely left on the model’s author.
The INPUT NUMBER does not influence the simulation itself, but it is an essential
information during the analysis (e.g., for receptive fields reconstruction).

There are two possible ways how to deliver the inputs to the simulation. First,
input module could create an array indexed by time ticks filled with inputs (one
input for each time tick) and deliver the array to the simulation core at the start
of the simulation. Second, the input module could implement a method, which
would return the input relevant for the given time tick.

The first approach has a main disadvantage in unnecessary memory demands.
This is true especially in the case of long experiment (possibly with simple and
repeated inputs). For this reason the second approach was chosen.

3.5 The simulation core

The simulation core is the basic part of the simulator. It uses a network created
by the network module, simulation parameters loaded from the settings files (see
the Section 3.5.6) and runs the simulation with the inputs generated by the
input module. During the simulation, specific variables may be monitored (again
according to the settings loaded from the settings files).

In this section, the main parts of the simulation core will be described. This
means the choice of the simulation technique, pseudocode of the main simulation

39

algorithm, several specific features (alternative reality and spontaneous activity),
computational optimizations, and description of the settings files.

3.5.1 Choice of the simulation technique

Since the event-driven simulation technique is not overly suited for the Izhikevich
neuron model (Brette et al., 2007), we decided to use the clock-driven approach
(1.2.5). In addition to that, we later measured ratio of the time spent on the
step with state updates versus the time spent on event steps (spike detection and
processing) and the state update parts took much less time (e.g., 10 times less)
than the events steps. Therefore the event-driven technique would not bring much
(or any) gain in computational time.

As the data structure for event storage, we first chose a circular array of linked
lists (see Figure 3.3), described already in the Section 1.2.5. We tried also other
data structures (such as Fibonacci heap), but they were less effective. Afterwards,
we implemented an improved version of the circular array, which helped both with
time and memory consumption. It is described in the section with improvements
3.5.4.

Figure 3.3: The data structure of the calendar (for storing synaptic events)
in a form of a circular array of array lists.

3.5.2 Main simulation algorithm

The simulation core implements both the original (Izhikevich, 2003) and the
generalized (Izhikevich, 2007) forms of Izhikevich neuron models and STDP in
the form described in the Section 1.2.2.3. The code is based on code and algorithm
structure from (Izhikevich, 2006) and (Izhikevich and Edelman, 2008). Therefore
we do not analyse the reasons for structure and particular steps of the algorithm.
Regardless, we explain the main steps (but details and reasons can be found in
(Izhikevich, 2006) and (Izhikevich and Edelman, 2008)).

To ensure a numerical stability, each neuron is simulated with a time step of
0.5 ms using the first-order Euler method (see the Pseudocodes 3.5 and 3.6). The
time step of the clock is 1 ms. This setting is often used in combination with the
Izhikevich neuron model (Izhikevich, 2003; Izhikevich et al., 2004a; Izhikevich,
2006; Muresan and Savin, 2007; Nageswaran et al., 2009). Inhibitory synapses
(synapses from inhibitory neurons) are not plastic, whereas excitatory synapses
are evolved according to the STDP rule. The synaptic delays are fixed and set by

40

the network module and their values are limited to the interval 〈1, MAX DELAY〉.
As it is used in (Izhikevich, 2006), the synaptic weights are not changed directly.
Instead, their derivatives are changed and weights are updated once a second
according to the rule:

weight + = WEIGHT INCREASE + weightDerivate

weightDerivate ∗ = WEIGHT DER MULT

where WEIGHT INCREASE describes activity independent increase of synaptic
weight needed to potentiate synapses to silent neurons (Turrigiano et al., 1998;
Desai et al., 2002). The synaptic weights are restricted in the permitted interval
〈0,MAX EXC W〉 for excitatory weights and 〈-MAX INH W, 0〉 for inhibitory weights.
All WEIGHT INCREASE, WEIGHT DER MULT, MAX EXC W, and MAX INH W are general
parameters of the simulation (for the overall description of used parameters, see
3.5.6).

The main algorithm is described by the Pseudocode 3.1. The main steps of
the algorithm are described independently: Detection of Spikes: 3.2, Pro-
pagation of Spikes: 3.3, Update of States: 3.4, and End of Second:
3.7. The part Generation of Inputs is by default relatively simple, since it
contains only setting of current inputs, which are generated by the input module.

For a better comprehension, we will explain the STDP part of the pseudocode:

1. In the step 1e of the Detection of Spikes 3.2, an excitatory synapse is
potentiated by the value of LTP of the postsynaptic neuron at the time be-
fore synapse.delay. This means that if, at that time, or shortly before that
time, a spike in presynaptic neuron was emitted, then this spike possibly
contributed to the postsynaptic spike and the synapse will be potentiated
up to the maximal value LTP. The longer from the presynaptic spike it was,
the less will be the synapse potentiated.

2. In the step 1(b)i of the Propagation of Spikes 3.3, excitatory synapse
is depressed by the current LTD value of the postsynaptic neuron. If the
postsynaptic neuron fired a short time ago, the LTD value is high. This
means that the presynaptic spike arrived shortly after the postsynaptic
spike, i.e. “late”, and the synapse is markedly depressed. The longer the
time from the postsynaptic spike it is, the less will be the synapse depressed.

41

Main simulation algorithm:

1. Initialization

2. for each second s

(a) for each tick t in s

i. Generation of Inputs

ii. Detection of Spikes

iii. Propagation of Spikes

iv. Update of States

(b) End of Second

Pseudocode 3.1: This pseudocode describes the main steps of the simulation
core process. The steps written in Small Caps mean larger parts of the code
and are described independently in Pseudocodes Detection of Spikes: 3.2,
Propagation of Spikes: 3.3, States Update: 3.4, and End of Second:
3.7, and are also referred later from the text.

42

Detection of Spikes:

1. for each neuron:

if (neuron.v >= neuron.vt) {spike detected}

(a) neuron.v = neuron.c

(b) neuron.u += neuron.d

(c) neuron.LTD = PARAM LTD

(d) neuron.LTP[t+MAX DELAY] = PARAM LTP

(e) for each excitatory synapse to neuron

i. fromTime = t-synapse.delay-1

ii. synapse.weightDerivate +=

synapse.from.LTP[fromTime+MAX DELAY]

(f) for each synapse from neuron

i. insert into calendar event synapse at time

t+synapse.delay

Pseudocode 3.2: Detection of Spikes part of the main algorithm. The
notation “neuron.v” means attribute v of the variable neuron. If a spike is
detected (membrane potential reached its apex), the membrane potential is re-
set to parameter neuron.c, membrane recovery is incremented by parameter
neuron.d, and STDP variables are reset to their extreme values. In the step
1e, excitatory synapse is potentiated by the value of LTP of the postsynaptic
neuron at the time before synapse.delay. Finally, in the step 1f, all syna-
pses from the neuron are added to the calendar to be processed at time after
synapse.delay ticks.

Propagation of Spikes:

1. for each event synapse at time t

(a) synapse.to.input += synapse.weight

(b) if (synapse.from is excitatory)

i. synapse.weightDerivate -= synapse.to.LTD

Pseudocode 3.3: Propagation of Spikes part of the main algorithm. All
synaptic events planned to this tick (t) are removed from the calendar and
processed. The synaptic event synapse means that at tick t a spike from neru-
on synapse.from to neuron synapse.to arrived. Therefore the weight of this
synapse is added to the input of the postsynaptic neuron. If the synapse is ex-
citatory (thus changeable by STDP), in the step 1(b)i, the synapse is depressed
by the current LTD value of the postsynaptic neuron.

43

Update of States:

1. for each neuron

(a) Update neuron state according the Izhikevich model

(b) neuron.LTP[t+MAX DELAY+1] = STDP MULT *

neuron.LTP[t+MAX DELAY]

(c) neuron.LTD *= STDP MULT

Pseudocode 3.4: Update of States part of the main algorithm. The neuron
state update in the case of original form of Izhikevich neuron model (Izhikevich,
2003) is described by the Pseudocode 3.5, whereas in the case of generalized
form (Izhikevich, 2007) is described by the Pseudocode 3.6.

Update of neuron state in the original form:

1. neuron.v += 0.5*((0.04*neuron.v+5)*neuron.v+140-

neuron.u+neuron.input)

2. neuron.v += 0.5*((0.04*neuron.v+5)*neuron.v+140-

neuron.u+neuron.input)

3. neuron.u += neuron.a*(neuron.b*neuron.v-neuron.u)

Pseudocode 3.5: Update of a neuron state according to the original form
of Izhikevich neuron model (Izhikevich, 2003). The solution of a membrane
potential part of the equation is computed in two steps, which leads to a higher
stability and accuracy.

Update of neuron state in the generalized form:

1. neuron.v += 0.5*((neuron.k*(neuron.v-neuron.vr)*

(neuron.v-neuron.vt)-neuron.u+neuron.input)/neuron.Cap)

2. neuron.v += 0.5*((neuron.k*(neuron.v-neuron.vr)*

(neuron.v-neuron.vt)-neuron.u+neuron.input)/neuron.Cap)

3. neuron.u += neuron.a*(neuron.b*(neuron.v-neuron.vr)-

neuron.u)

Pseudocode 3.6: Update of a neuron state according to the generalized form
of Izhikevich neuron model (Izhikevich, 2007). The solution of a membrane
potential part of the equation is computed in two steps, which leads to a higher
stability and accuracy.

44

End of Second:

1. for each neuron and for j from 0 to MAX DELAY+1

(a) neuron.LTP[j] = LTP[TICKS+j]

2. for each synapse

(a) synapse.weight += WEIGHT INCEREASE+snapse.weightDerivate

(b) synapse.weightDerivate *= WEIGHT DER MULT

(c) synapse.weight = min(MAX WEIGHT, max(0,

synapse.weight))

Pseudocode 3.7: End of Second part of the main algorithm. All weights
are updated and LTP is shifted, to be prepared for the next second.

3.5.3 Alternative reality

3.5.3.1 Alternative reality: motivation and description

One of the advantages of models is the fact, that model also allows experiments
which are impossible to run in the reality (in vivo or in vitro). Example of this si-
tuation could be running certain in silico experiments in an alternative reality. To
explain this idea, it will beneficial to describe the motivation for such alternative
reality first.

Measurement of some characteristics in the auditory cortex requires specific
and possibly long experiments. Receptive fields could represent such an exam-
ple. Receptive field may be defined as follows: “The receptive field is a portion
of sensory space that can elicit neuronal responses when stimulated. The sensory
space can be defined in a single dimension (e.g. carbon chain length of an odo-
rant), two dimensions (e.g. skin surface) or multiple dimensions (e.g. space, time
and tuning properties of a visual receptive field). The neuronal response can be
defined as firing rate (i.e. number of action potentials generated by a neuron) or
include also subthreshold activity (i.e. depolarizations and hyperpolarizations in
membrane potential that do not generate action potentials).” (Alonso and Chen,
2009)

In the case of neurons in the auditory cortex, the space of inputs is often
characterized by input amplitude (volume) and frequency, the main characteris-
tics of the sound. To measure the receptive field of a neuron, a battery of pure
tones of different frequencies and amplitudes is typically selected and played to
the observed individual repeatedly.

Receptive field is a type of feature that may evolve during both shorter and
longer periods. It can be influenced by the sounds heard during the initial phase
of life. Therefore, if we want to measure the development of a receptive field over
time, when the individual listens to a very specific type of sounds (e.g., total
silence, some type of noise, pure tones, etc.), the experiment that measures the
receptive fields may significantly influence the measured feature.

45

However, in experiments in silico, such kind of experiment could be possible.
We would only need to have the possibility to suspend the “long experiment” (in
which the observed individual listens to the specific type of sounds) and run a
“short experiment” (in which the receptive fields are measured) in the alterna-
tive reality and then again continue with the long experiment. This sequence of
interlaying in the normal and the alternative reality may be done repeatedly, see
Figure 3.4.

Such a possibility of the alternative reality could be useful in any kind of mo-
del (not only auditory), where one needs to observe development of some complex
feature during a longer experiment. Before description of possible implementati-
ons of such alternative reality, we should first describe the requirements for this
function:

1. Have a possibility to run an experiment B inside an experiment A (at time
t), which will not be influenced by the experiment B. This means that
experiment A would come out identically with and without interruption by
the experiment B.

2. For a simplification, the experiment B could be run without changes of
long-term plasticity. This simplification is quite reasonable, because the
experiment B is typically short.

Figure 3.4: A diagram of the alternative reality. Here, the experiment A
should be interrupted at times T1 and T2 and in both these times, the ex-
periment B should be run. However, the experiment B should not influence the
experiment A, which we call running in an alternative reality.

3.5.3.2 Alternative reality: possible solutions

There are three main possible solutions how to implement the function of the
alternative reality:

1. The first solution stops an experiment A at time t, copies all relevant data
structures to a local copies, runs the experiment B on these copies and

46

after the end of the experiment B continues with the experiment A on
the original data structures. The relevant data structures are calendar and
changing parts of the network (attributes u, v, LTD and LTP of neurons
and attributes weight and weightDerivate of synapses).

2. The second solution also stops an experiment A at time t, but continues
with the experiment B on the same data structures with frozen weights
(and turned off STDP), and then again continues with the experiment A
with again turned on STDP and unfrozen weights, still on the same data
structures.

3. The last solution instead of stopping the experiment A only saves the chan-
ging data structures into a file. After the end of the experiment A, the
changing values are loaded and experiment B is run.

3.5.3.3 Alternative reality: discussion of possible solutions

1. The first solution is accurate to the intent that the experiment B does not
change the experiment A. On the other hand, it has quite large both memory
and time demands, since it copies large data structures. It is important to
realise that the changing values of the network and the calendar comprise
the majority of the memory demands of the simulator. These demands are
not caused only by the elements inside these structures, but their quantity,
in the case of large-scale networks.

2. The second solution does not bring any extra memory demands. However,
the result is only approximate and does not exactly correspond to the mar-
ked out requirements.

3. The third solution is accurate, simple and the only extra memory demands
concern the external memory (on a hard-disk), which is typically not a
limited resource. It has also other positive advantages. If the data structures
are saved from more times of the experiment A and in all these positions
the experiment B should be run, these experiments may be run parallelly,
which can accelerate the whole process. In addition to that, the saved data
structures may be used also as a log for other retro-analysis. The only
drawback of this solution may be the deceleration of the experiment A by
saving the data structures to HDD (hard disk drive).

3.5.3.4 Alternative reality: outcome

Since the first solution has an essential drawback in memory consumption and
the third solution is not accurate, we chose the third solution. We tested the time
needed to save the data structures of a typical network (up to 105 neurons). The
time was in the order of few seconds (1 s for a network with 104 of neurons,
14s for a network with 105 of neurons). If only few times in the simulation the
alternative reality is needed, this deceleration is not a problem.2

2Furthermore, the time consumption could be largely decreased using a SSD (solid state
drive) hard disk.

47

3.5.4 Computational improvements

Although the Izhikevich neuron model and the chosen implementation of STDP
are computationally advantageous, the speed of the simulation for large-scale
network is still an important issue. After the whole simulator was implemented
in the basic form, we designed and implemented several improvements of both
time and memory aspect. We list them in the following subsections in the order
from the smaller improvements to the bigger ones.

3.5.4.1 Limiting frequent use of methods and constructors

Java code style often contains techniques, which are nice, transparent and sa-
fe, such as encapsulation, separating everything into object, etc. However, use
and especially overuse of these techniques may have negative impact on the per-
formance. Frequent calls of constructors and methods should be used carefully
and tested in a profiler. After a conscionable profiling, we decided to substitute
some private attributes encapsulated in getters and setters with public attribu-
tes. At the same time, we made an effort to avoid creating huge amount of new
objects. On the other hand, we tried to keep the whole code well-arranged and
transparent.

3.5.4.2 Effective data structures

During the initial stage when high-level algorithms and usage of data structures
were designed, we followed the classical approach to basic data structures (linked
list, array, hash table, etc.) choice. Java offers built-in collections, such as Arra-
yList, LinkedList, or HashMap, which are easy to use. However, it is known that
own implementations based on basic arrays, may be more effective if one is willing
to give up some functionality. To test the efficiency for our usage, we compared
their performance in operations used in the algorithm. The main result of this
improvement is a usage of a dynamic array (see Figure 3.5) instead of the linked
list in the circular array of the calendar. This improvement helped not only in
the terms of time consumption, but also a memory efficiency.

Figure 3.5: The two tested data structures of the calendar. Left: the circular
array of linked lists. Right: the circular array of dynamic arrays. The green
array indexed are the used ones, whereas the gray are the unused ones. Every
time, when the dynamic array is too small, it is two times enlarged.

48

3.5.4.3 Parallel processing: description

The last and most significant group of improvements is based on parallel pro-
cessing. It is obvious that the best tasks for parallelization are such tasks that
can be divided into parts solvable separately in different threads without need of
work with shared data. In the case of risk that more threads would change the
same data via a non-atomic operation, then additional mechanisms must be used
to prevent inconsistency. The possible mechanisms in Java are for instance locks
and synchronization (for more information about concurrency in Java see e.g.,
Peierls et al., 2005).

3.5.4.4 Parallel processing: preliminary notes and trivial solutions

In our case, there is not any trivial division into parts. If the network consis-
ted of separated parts of neurons with limited “communication” between these
parts, the trivial division would be to compute simulation of these parts in se-
parate threads (one thread for each network part). By the “communication” we
mean transmission of the action potential. However, the network does not have
to contain any separated parts in general, so this trivial solution is out of the
question.

Another trivial solution of a certain sort of parallelism is to run more separate
experiments in parallel. This solution does not need any ingenious algorithms, just
the possibility to run more experiments in one Java process, or even in separate
processes. It could be done always, when memory resources are sufficient for all
these experiments.

To analyse the possibilities of non-trivial solution, we need to recapitulate the
basic structure of the simulation algorithm and realize, which section could be
run in parallel threads. There are five main sections (steps) of the algorithm:

1. Generation of Inputs

2. Detection of Spikes

3. Propagation of Spikes

4. Update of States

5. End of Second

The last section is run only once a second and consumes much less time
than the other sections. The Generation of Inputs in the basic algorithm
is also simple and is provided by the input module. For these reasons, we will
discuss only the sections Detection of Spikes, Propagation of Spikes and
Update of States. We will start from the Update of States section, which
is easiest to parallelize, and then continue with sections Detection of Spikes
and Propagation of Spikes. The used solution for these two sections will be
described together in the end of the chapter due to their common work with the
calendar. In all the following sections, let T be the number of available threads.

49

3.5.4.5 Parallel processing: Update of States section

The Update of States (see Pseudocode 3.4) section can be computed in paral-
lel quite easily. Since the natural solution of making Update of States parallel
is easy and without drawbacks, we do not describe any other solutions and move
on directly to the used solution.

The neurons are divided into T groups and each thread updates states of
neurons from one group. Useful implementation of this idea is to have the group
of neurons defined by boundaries of the half-bounded interval 〈start, end). This
means that this group contains neurons with numbers start, start+1, . . . , end−1.
Then the thread needs to know only the value of start and end variables and have
an access to the network. This implementation is thread-safe (threads work with
another parts of the network) and easy to implement.

3.5.4.6 Parallel processing: Detection of Spikes section

Let us recall the section Detection of Spikes (see Pseudocode 3.2). There are
three types of changes done during this section:

1. Changes of attributes of the firing neuron.

2. Changes of attributes of the synapse going to the firing neuron.

3. Adding an event to the calendar.

The natural approach to division work among threads would be again to let
each thread take care of separate group of neurons and for each of them test the
firing condition and possibly do the rest of changes. The two types of changes
would be thread-safe, because they are related only to the neurons from one
group. However, the action of adding an event to the calendar may present a risk,
since it is not an atomic operation.

Possible solutions. We designed three possible solutions of the problem with
thread-unsafe operation of adding an event to the calendar:

1. In the first solution, the operation of adding an event into the calendar is
synchronized. (There is a simple way how to do it in Java: add a keyword
synchronized to the relevant method.)

2. In the second solution, each thread adds all events into its own local calendar
and at the end of the tick, all calendars are merged together.

3. In the third solution, during the whole simulations, T calendars are main-
tained. Each thread adds event only to “its” calendar and these data are
never merged together.

Discussion of the possible solutions. The proposed solutions have the following
advantages and disadvantages:

50

1. The first solution is easy to implement. On the other hand, the synchro-
nization may be computationally expensive and may lead to more serial
computing than parallel computing, because adding to the calendar is one
of the most frequent operations in the Detection of Spikes section.

2. The second solution would need some effective implementation of merging
the calendars. It is a question whether merging calendars instead the first
solution would be more effective. The probably best way how to find out
the answer would be to implement both solutions and measure them in the
profiler.

3. The third solution is both easy to implement and thread-safe. Because it do-
es not need any synchronization, it is effective. The only possible drawback
of this solution is the fact that events in the calendars may be distribu-
ted unevenly. This means that one calendar could contain only few events,
whereas other calendars would contain plenty of them.

3.5.4.7 Parallel processing: Propagation of Spikes section

The section Propagation of Spikes (see Pseudocode 3.3) is the shortest one.
Unlike the two previous sections, this is iterated over the events from the calendar
(instead of neurons). Therefore the natural distribution among threads is to divide
these events into groups and let each thread go through one group of events. There
are two matters that must be solved:

1. How to divide the events into the groups.

2. How to make the changes of neuron attribute (input) and synapse attribute
(weightDerivate) thread-safe.

Possible solutions. There are two main possible approaches how to solve these
matters:

1. In the first approach, the events are distributed into groups in such way,
that events-synapses with the same postsynaptic neurons will be in the
same group. Then, each thread will change attributes of different neurons
and synapses, and the whole code will be thread-safe.

2. In the second approach, the events are distributed into groups in any sui-
table way and both operations are made atomic (e.g., using a lock).

These approaches do not specify the exact method, how the events are distri-
buted into groups. It depends on the structure of the calendar. The basic structure
described is a circular array of linked list. However, also other structures may be
used – for instance the structure of T separate calendars, suggested in the Secti-
on 3.5.4.6, where possible solution of Detection of Spikes parallelism were
described.

There are at least four possible solutions, how to divide the events into groups:

51

1. The first solution works with the basic data structure for the calendar (the
circular array of linked lists). Here, the linked list is iterated over and divided
into T (nearly) evenly large groups. Since in this solution, we go through
the whole list, it is possible to divide the synaptic events according the
postsynaptic neuron or any other rules.

2. The second solution works with slightly adjusted basic calendar. When the
calendar is created (events are added), there are kept T pointers to different
parts of the list. Subsequently, when we need to divide one list into T groups,
we just cut the sub-lists defined by the pointers. There is a problem that
during creating calendar we do not know how many events will be added
and hence how distant the pointers should be. It would not be probably
so difficult to design an effective algorithm or heuristic for this solution.
However, because other solutions have better qualities, it is not necessary
to describe this one in greater details.

3. The third solution works with the calendar in the form of circular array of
arrays. These array may be in the form of the ArrayList, a built-in collection
in Java, or the array of fixed maximum length (if we know the maximum
number of events for one tick), or the dynamic array. Dividing an array
into T parts is easy and can be done in the same way as it was used in
Update of States and Detection of Spikes, where we divided an
array of neurons.

4. The fourth and last solution works with the set of T calendars in cooperation
with the last solution of the section Detection of Spikes. The usage is
again very simple: each thread works directly with events from one “its”
calendar (e.g., the calendar with the same serial number as the thread’s
serial number).

Discussion of the possible solutions. The proposed solutions have the following
advantages and disadvantages:

1. The first solution is relatively simple and flexible, because it allows dividing
the events into the groups according any rule. Therefore it can be used
in combination with the first approach how to make the Propagation of
Spikes thread-safe. This means that the synaptic events can be divided
into groups with disjoint postsynaptic neurons. However, this solution is
relatively ineffective, since it requires going through the whole list of events
before the parallel section starts. This nearly two times more work (each
event will be processed twice instead of once) where nearly half of this
work would not be parallelized. Therefore it is even a question whether this
solution would bring any speedup.

2. The second solution could be faster than the first one, but the final per-
formance would depend of the implementation of pointers maintenance.
However, it does not allow any added flexibility (as the first solution) and
is more complicated than all the other solutions.

3. The third solution is both fast and easy to implement.

52

4. The fourth solution is also fast and easy to implement.

3.5.4.8 Parallel processing: outcome

For both the Detection of Spikes and Propagation of Spikes we chose
the last solution – the solution which uses T separate calendars. The resulting
flow of processing is depicted in the Figure 3.6.

First, neurons are separated into T groups and all groups are processed con-
currently, each in a separate “Detection Thread”. Each thread uses its own calen-
dar, to which it adds the synapses from the spiking neuron. It is good to realise,
that synapses leading from one neuron will be added to one calendar.

Subsequently, after all “Detection Threads” are finished, the computation is
again divided into T threads: the “Propagation Threads”. Each thread processes
neurons from one calendar. Thanks to the fact, that one presynaptic neuron can
occur only in synaptic events of one calendar, there is no need to wrap the step

synapse.weightDerivate -= synapse.to.LTD

with a lock, because there is no risk that two different threads would change
the same synapse. However, the step with update of the neuron’s input must be
wrapped with a lock.

When all “Propagation Threads” finish, the neurons are divided into T groups
and each group is updated by one “Update Threads”.

The extent of the performance upgrade as well as comparison of performance
demands for each section are described and discussed in the Chapter with results
4.

3.5.5 Spontaneous activity

It is a well known fact that neocortical networks in the brain produce an activity
in the absence of any sensory stimuli (Arieli et al., 1995). One of the mechanisms
underlying this spontaneous activity are the miniature Postsynaptic Currents
(mPSCs)3 called “minis” (Timofeev et al., 2000), a spontaneous release of neu-
rotransmitter, independently on the spikes. In some models, the spontaneous
activity is modelled just as a nonspecific and typically stochastic background in-
put (e.g., in Hansel and Mato, 2001). However, several models model exactly
the process of mPSCs (Muresan and Savin, 2007; Izhikevich and Edelman, 2008;
Phoka et al., 2012, e.g.,). Since this approach corresponds more accurately to
the reality, we chose it for introducing a spontaneous activity in our model of the
AC, and therefore to implement it in the SUSNOIMAC simulator.

First, we will describe the main features of the basic mPSCs mechanism used
in computational models. Each synapse has a probability P that an mPSC will
occur on this synapse at this time with amplitude A. The probability can be
expressed also in the form of frequency F with the relation P=F/fs, where fs is
number of ticks in one second. Subsequently F in expressed in Hz and A in for
instance in pA. In general, the parameters F and A may be fixed and global for
the whole network and the whole simulation (which is probably a simplification),
or they can be specified according the synapse type and eventually they can also

3Or miniature Postsynaptic Potentials (mPSPs).

53

Figure 3.6: A diagram of a parallel computing of the main simulation algo-
rithm.

vary somehow evolve the simulation. However, in this simulator just the version
of fixed and global parameters was implemented. The main reason is that we
would not use any more general version, because we did not have data to which
the values of these parameters (dependent on synapse type and possibly time)
would be fitted. The extension for more general version is a possible future work.

Nevertheless, at first, we will describe and discuss possible solutions of mPSCs
implementation.

3.5.5.1 Implementation of spontaneous activity: possible solutions

In this section we use the phrase “throw a die against a number X”. By this
phrase, we mean generate a number from 〈0, 1〉 from uniform distribution and
test, whether the generated number is lower or equal than X. If yes, we say that
throw was successful. Otherwise the throw was unsuccessful.

We considered three possible implementations of spontaneous activity in the
form of mPSCs:

1. The first and most direct implementation goes through all synapses and for
each throws a die against P and in the case of success, it emits a mPSC with
amplitude A at this synapse. This means that the value A is added to the

54

input of postsynaptic neuron of the synapse, if the synapse is excitatory,
and value −A if the synapse is excitatory.

2. The second implementation generates M synapses, on which a mPSC will
occur in this tick. M is defined as P·S, where S is the number of synapses in
the network. We should note, that besides the synapses numbers generation
it is also necessary to go through these generated synapses and on each emit
a mPSC with the given amplitude A.

3. The third implementation goes through the neurons and for each neuron
generates two numbers from the binomial distribution: N1 and N2. The
first number, N1, is from Bi(nE, P), where Bi means binomial distribution
and nE means number of excitatory synapses that lead to this neuron.
The second number, N2, is from Bi(nI, P), where Bi again means binomial
distribution and nI means number of inhibitory synapses that lead to this
neuron. Subsequently to the input attribute of this neuron, the value N1·A
+ N2·(−A) is added.

3.5.5.2 Implementation of spontaneous activity: discussion of possible
solutions

First, we should mention that these three implementations do not do the same.
The number of synapses with mPSC in the second implementation is always
P·S, whereas in the first and third implementation the value P·S is only a mean
value of the number of synapses with mPSC. Since we do not have any preferences
between these behaviours, we do not assess them as positive or negative. However,
it is good to be aware of this difference.

There are other two main factors which could be considered in the comparison
of the suggested implementations. The first factor is the performance and possibi-
lity of parallelization and the second is a possibility of extension for more general
version of parameters P (resp. F) and A: parameters specific for the synapse type
or changing over time. We will call this extension as synapse-specific parameters
P and A, and changing parameters P and A.

1. The first implementation could be trivially combined with both synapse-
specific and changing parameters P and A. On the other hand, this im-
plementation is very time consuming. It iterates over all synapses in every
tick. It could be parallelized but, it would significantly decelerate the whole
simulation nevertheless.

2. The second implementation could also be combined with the extended versi-
ons of parameters P and A. The performance is better than in the previous
case, because we do not go through all synapses, but only through P*S
synapses. It could be also parallelized.

3. The third implementation is the most effective one, because the number of
neurons is typically (significantly) smaller than both S and P·S. The final
performance depends also on the performance of generating the numbers
from the binomial distribution. (For instance the performance of trivial im-
plementation of generating a number from Bi(N,P), where for each of N

55

numbers we throw a dice against P, would be as slow as the first solution.)
Besides the natural efficiency of this solution, it could be also easily pa-
rallelized. We should also mention that this third implementation needs to
know the number nE and nI for each neuron. However, these numbers can
be stored in two simple arrays indexed by neurons. To end the evaluation
of this solution, it is not well suited for the extended versions of parameters
P and A. The implementation could be extended for the synapse-specific
parameters (e.g., by storing the numbers of the synapses of each synapse ty-
pe leading to the neuron). However, the extension for changing parameters
would be either complicated, or inefficient.

3.5.5.3 Implementation of spontaneous activity: outcome

With regards to the main goal of the simulator – the model of Auditory Cortex,
the factor of performance was much more important than the factor of introdu-
cing the extended versions of parameters P and A. Therefore we chose the third
implementation in the parallel version. The resulting flow of the whole simulation
is depicted in the Figure 3.7. First, the basic inputs are generated by the input
module. Then the mPSCs are generated and added to the inputs. This phase is
performed in concurrency in parallel threads called “Input Threads”. The rest of
the flow is same as in the previous version.

3.5.5.4 Implementation of spontaneous activity: choice of pseudoran-
dom generator

When using a pseudorandom number generator (PRNG) it is very important to
use a good one, which generate numbers with high degree of randomness, and
which is fast enough. In the past certain research results turned out unreliable,
because they were produced by low-quality PRNGs, such as the RANDU gene-
rator from IBM mainframes (Schutter, 2010, chap. 2). Also, the built-in PRNGs
of the C and C++ languages are often badly implemented and should be avoided
(Press et al., 2007).

Therefore we made an effort to find a PRNG which would be both of high-
quality and fast enough. After research of possible PRNGs, we chose the Mersenne
Twister method (Matsumoto and Nishimura, 1998) as one of the best PRNGs
suitable for most applications except cryptography and recommended also for
the computational neuroscience (Schutter, 2010, chap. 2). We used the imple-
mentation of this method provided by the Colt Parallel Java library described in
the Section 3.7.

3.5.6 Setting simulation parameters

Instead of using constants fixed in the code, we decided to set the simulation
parameters via a settings file. Actually, it is a rather obviously better approach,
but we will mention the main three advantages of this approach explicitly. First,
the user does not have to change code to run an experiment. Second, the saved
settings for the experiment could be used also during analysis of the results, or
as a log. Third, this approach can be easily used for batch processing of more
experiments in a row.

56

Figure 3.7: A diagram of the resulting parallel computing of the main simu-
lation algorithm with parallelization of Generation of Inputs, where also
mPSCs are generated.

We decided to use a transparent format of Java.propeties, see 3.8 for an exam-
ple. The main simulation parameters are listed in the Tables 3.7, 3.8, 3.9, and
3.10. Other minor parameters (such as those related to logs, loading and saving)
are described in the User Documentation 1.

Name Unit Description Used values

TICKS SIM ms Duration of the simulation up to 7200000
LOG START s Frequency of time frames of logs various values
LOG DURATION s Duration of time frames of logs various values
CHV s Frequency of alternative reality various values

Table 3.7: The simulation parameters related to time.

The simulation parameters are set in the file simulationX.properties, where
X means the number of the experiment (starting with value 1). The exact names
used in this file are slightly different than those in the listed tables (some of them
are shortened here), but their names can be easily found both in the example files
and User Documentation 1.

57

Figure 3.8: Example of a part of the properties file, which is used to the setting
the parameters of the simulation.

Name Unit Description Used
values

OLD EQ boolean True for the original Izhikevich mo-
de, false for the generalized one

both

SIMULATE boolean True for continuing with simulation
after initialization

both

VISUALIZE boolean True for continuing with visualizati-
on (in Java) after simulation

both

M MIN T ms The tick, when the monitoring of
values for retrospective visualization
(in Java) starts

various

M MAX T ms The tick, when the monitoring of
values for retrospective visualization
(in Java) ends

various

Table 3.8: The general simulation parameters.

58

Name Unit Description Used
values

M FREQUENCY Hz The frequency of mPSC on each syna-
pse (called F in the text)

15–60

M AMPLITUDE pA The amplitue of mPSC on each syna-
pse (called A in the text)

13–27

STDP boolean True for STDP applied during the si-
mulation

both

PARAM LTD - Reset value of LTD after spike (the A−
part of STDP)

1.2, 2

PARAM LTP - Reset value of LTP after spike (the A+

part of STDP)
1

W INCREASE - Activity independent increase of syna-
ptic weight (this value is added to each
excitatory synapse once a second)

0.1

W DER MULT - Each excitatory weight derivative is
multiplied by this value once a second

0.9

STDP MULT - Values of LTP and LTD are multiplied
by this value each tick – e.g., value
95 can be used for the rate e(−t/20) =
0.951229424

0.95

Table 3.9: The simulation parameters related to parameters of the used sy-
napse dynamics.

Name Unit Description Used
values

THREAD INP boolean True for parallelization of the phase
Generation of inputs

both

THREAD DET boolean True for parallelization of the phase
Detection of spikes

both

THREAD PROP boolean True for parallelization of the phase
Propagation of spikes

both

THREAD UPD boolean True for parallelization of the phase
Update of states

both

Table 3.10: The simulation parameters related to parallelization.

59

3.6 Analysis module

3.6.1 Possible choices of implementation of the analysis
module

The main part of the analysis of the simulation results is related to analysis of
spike trains (list of spikes: who fired and when), or development of other va-
lues (e.g., membrane potential, or weights). There are (at least) three possible
solutions, how to implement such analysis:

1. The first solution analyses and visualises the result during the simulation.

2. The second solution monitores the relevant values and saves them into inner
data structures and after end of the simulation, the analysis and visuali-
zation starts.

3. The third solution also monitores the relevant values, but saves them into
log files on HDD and after end of the simulation, the monitored values are
loaded, analysed and visualised.

3.6.1.1 Discussion of possible choices of implementation of the analy-
sis module

1. The first solution is advantageous for two reasons. First, such concurrent
visualization could be beneficial for debugging. However, the classical de-
bugging such as watching values of singular variables is in the case of large
scale networks very difficult. Other approaches to debugging are in this case
more suitable (such as colouring the neurons, or observing average values),
and these approaches typically do not need the concurrency of simulation
and visualization. Second, the concurrent visualization could be beneficial
in combination with user interventions: e.g., changing the inputs, or pa-
rameters. On the other hand, this solution of analysis module has several
drawbacks. Sometimes, the simulation is faster than analysis, and analysis
(and its visualization) would retard the simulation. Other times, the simu-
lation is slower than analysis, and observation of such analysis would be
slow and inconvenient.

2. The second solution is ideal for small or medium-size networks and rather
short experiments. Simulation is not retarded (e.g., by analysis, or saving
to log files) and analysis can be run automatically immediately after si-
mulation. This makes the debugging cycle fast and comfortable. However,
the large networks and long experiments may lead to depleting the possible
memory. Then, the third solution must be used.

3. The third solution is actually a necessity in the case of large networks and
long experiments. Moreover, it brings several advantages. The analysis may
be done separately (possibly also in parallel) and whenever after the simu-
lation. The log files may be used also for other uses. For instance they can
be loaded by other programs, e.g., specialized for the spike trains analysis.

60

3.6.1.2 Outcome of possible choices of implementation of the analysis
module

In this thesis, we chose the combination of second and third solution: for smaller
networks and shorter experiments a possibility of visualization of the coarse of
the simulation in Java, and for all experiments possibility of a subsequent more
complex analysis in Matlab. This combines all important features of the analysis
module: fast and comfortable debugging for smaller experiments and sufficiently
rich analysis for all (also big) experiments. For the subsequent analysis (loaded
from log files) we chose tha Matlab language for the following reasons:

1. Matlab is specialized for processing the numerical data: it is fast in this
processing (without necessity of additional optimalizations) and contains
many built-in functions, useful for the analysis (e.g., statistical functions,
FFT, visualization of graphs). In contrast, own implementation of these
functions in Java, or connecting third-site libraries, would be much more
time-consuming.

2. Matlab is frequently used in the community of neuroscientists. Therefore,
implementing the analysis module in Matlab is advantageous also for those
users, who would like to change or extend the analysis, but are not familiar
with Java.

First, we list the analysis in Java, and second, the analysis in Matlab.

3.6.1.3 Functions of the analysis module: Java part

It is possible to specify an interval 〈 M MIN T, M MAX T 〉, when the following neuron
the dynamic variables (i.e, v, u, LTD) and inputs of neurons are monitored. After
the simulation, if switch parameter VISUALIZE is on, the visualization window is
opened. It shows two views:

1. The 3D view on the network, which is possible to zoom in and out and
rotate. In this view either the whole network, or one layer can be displayed
(see Figure 3.10).

2. The 2D view on a single layer (see Figure 3.9).

In addition to that the visualization window contains the time line, which
allows to display (in both 2D and 3D view) development of the network. The
neurons are coloured according to a value of the chosen dynamic variable.

Finally, the development of all dynamic variables of a singular may be displa-
yed in the given interval (see Figure 3.11).

61

Figure 3.9: An example of 2D view of an input layer and neurons coloured
according to the input value. Here, three neurons in one band are stimulated.

Figure 3.10: The 3D view of the network (here only a single layer). It is
possible to zoom, move and rotate the view.

Figure 3.11: The development of variables of a certain neuron (left excitatory,
right inhibitory). It is possible to depict such plot for any neuron in the network
and any given time interval of the simulation.

62

3.6.1.4 Functions of the analysis module: Matlab part

The analysis in Matlab is divided into three scripts: analysis of the main features,
development of the weight distribution, and analysis of the features related to
tonotopy (this is a part specific for the auditory model).

Script A The script A computes and displays:

1. The spike time raster plot, coloured according to the neuron types: Figure
3.12.

2. The development of the mean firing rates, according to the neuron types:
Figure 3.13.

3. The box-plot of the mean firing rates, according to the neuron types: Figure
3.14.

4. The development of mean excitatory weights (only excitatory, because inhi-
bitory are static): Figure 3.15.

5. The 3D view on the network, neurons are coloured according to the neuron
types: Figure 3.16.

6. The global oscillations (waves) from spike trains of the whole network: Fi-
gure 3.17.

7. The local oscillations (waves) from smaller areas of the network (these areas
can be specified in the parametrization of the script): Figure 3.18.

63

Figure 3.12: The spike time raster plot draw spike trains in the raster plot,
where the axis x corresponds to time and the axis y to the neuron numbers.
The neurons are sorted by their location in the network: neurons from L1 at
the bottom and neurons from L6 are at the top. The different neuron types are
distinguished by the colour: pyramidal (p), spiny stellate (ss), basket (b),
and non-basket (nb).

Figure 3.13: Firing rate plot depicts mean firing rate of each neuron type over
time. The axis x corresponds to time (in s) and the axis y corresponds to firing
rate (in Hz). The different neuron types are distinguished by the colour (see
the legend). Black colour represents the mean firing rate of the entire network.
Here, the most active neuron types are b2/3 (basket neurons from L2/3) and
b5 (basket neurons from L5).

64

Figure 3.14: This boxplot is an additional statistic to the mean firing rate
of neuron types. The axis x corresponds to the neuron types and the axis y
corresponds to firing rate (Hz).

Figure 3.15: This plot depicts the development of the mean values of the
excitatory weights over time. The axis x corresponds to time and the axis y
corresponds to the weight value. The inhibitory weights do not change over
time and therefore they are not included.

65

Figure 3.16: This plot depicts the arrangement of the neurons in the network.
The neuron types are distinguished by the same colours as in 3.13. Here, (aty-
pically) from bottom to top: L1 (very sparse), L2/3, L4, L5, and L6.

66

Figure 3.17: The analysis of the oscillation spectrum of the entire network.
Left: the plot of number of spikes in each tick over time. Right: the oscillation
spectrum. The axis x corresponds to the wave frequency (in Hz) and the axis
y corresponds to the oscillation power. Here, waves with frequencies 5 (theta)
and 10 (alpha) are present.

Figure 3.18: The analysis of the oscillation spectrum of a local area. Left:
the location of the measured area (here, from layers L5 and L6). Right: the
oscillation spectrum. The axis x corresponds to the wave frequency (in Hz) and
the axis y corresponds to the oscillation power. Here, waves with frequencies 5
(theta), 10 (alpha), 16 and 19 (beta), 37 and 62 (gamma) are present.

The algorithm chosen for computation of oscillations is based on the algorithm
recommended in (Trappenberg, 2010, pp. 138). First, for each tick of a given
interval, number of spikes is computed. Second, the Fast Fourier Transformation
(FFT) of this vector is computed. Third, the absolute square of each (complex)
Fourier component is computed and plotted against the frequencies. The values
of wave frequencies used in the analysis 8 are listed in the Table 3.11.

Script B The script B displays the weight distribution: Figure 3.19.

67

Frequencies Wave name

0.5–4 Hz delta
5–7 Hz theta
8–12 Hz alpha
18–30 Hz beta
30–50 Hz gamma

Table 3.11: The used names of oscillation waves.

Figure 3.19: The distribution of synaptic weights in the network. The axis
x corresponds to the weight value (positive are excitatory and negative are
inhibitory) and the axis y corresponds to the number of weights with that value.

Script C The script C computes and displays the auditory-related features.
They are described in the Section 7.5.3.

3.7 Other Software

The SUSNOIMAC tool uses the following Java libraries:

1. Parallel Colt (Wendykier and Nagy, 2010; Wendykier, 2013) for generating
pseudorandom numbers with the Mersenne-Twister method (Matsumoto
and Nishimura, 1998).

2. JMathPlot (Richet, 2013) for drawing 3D plots.

68

4. Simulator: Results

This chapter briefly describes the validation tests performed on the simulator and
the performance of the simulator.

4.1 Validation tests

All parts of the simulator was tested and validated continuously during the soft-
ware development. Namely, the following tests were performed:

1. Saving and loading interrupted simulation: test verified that the simulation
is saved and loaded correctly and that this interruption does not change the
experiment.1

2. Saving and loading the parallel reality: test verified the same features as in
1.

3. Parallel computing: test verified that parallel versions do not change the
experiment.

4. Visualization: we manually verified that visualization part displays the right
values.

5. Simulation of single neurons: we compared the behaviour of all neuron types
used in the AC model is the same as when using the Matlab code provided
by Izhikevich (2003).

6. Simulation of a basic network: we verified that a network published in (Izhi-
kevich, 2006) simulated in SUSNOIMAC gives the same results as when
using the C++ code provided by Izhikevich (2006) (except small differen-
ces caused by the pseudorandom generator).

4.2 Performance

The measurements of performance were performed on two machines:

1. “[PC]” processor: Intel(R) Core(TM) i7 CPU 930 @ 2.80 GHz, RAM: 6 GB

2. “[server]” processor: Intel(R) Xeon(R) CPU X5660 @ 2.80 GHz, RAM: 64
GB

We will refer to these machines as “[PC]” and “[server]”. All measurements
in this chapter are based on the values averaged over several experiments (5–
10). However, the differences were negligible (lower than 1/100 of the measured
value).2

1We must note that stochastic parts of the simulation are dependent on the state of the
pseudorandom number generator.

2In addition to that, the aim of this section is not to perform an exhausting analysis of perfor-
mance of different approaches to simulations, but to provide an idea about what improvements
were important.

69

The speed of simulation is highly dependent on the used network (number
of neurons and density of synapses), inputs (both external inputs and generated
mPSCs). During the simulator development, we gradually implemented several
computational improvements (described in the Section 3.5.4). To provide an idea
of state before these improvements, the Table 4.1 contains duration (in real s)
of simulation, which lasted 1s of model time, measured on the “[PC]”. All other
features (such as synapse density) are described in the Chapter 7 with the model
description3. As we can see in the table, the simulation of larger networks was
so slow that it could be hardly used (simulation of one hour (model time) would
last almost 2 days).

1,000 10,000 50,000 100,000

6 s 147 s 2,730 s N/A

Table 4.1: Performance before improvements. The duration of execution of 1s
(model time) simulation according to the network size (with the same density
of synapses). The results from the network with 100,000 neurons are not shown
due to high memory demands. All experiments measured on “[PC]”.

The most important improvements were parallelization and buffered array in
the calendar. The improved array helped not only in the terms of time, but also
memory consumption. Therefore, also the simulation of larger networks (such as
with 100,000) was possible.

The Table 4.2 shows results from the final simulator version with all improve-
ments. The measured experiments are exactly the experiments described in the
Chapter 8. Here, we mention just the basic features: the mean firing rate ranged
between 3–4Hz, the mean number of synapses to neuron was approximately 200
in average. The execution time of 1s is averaged over the whole experiment (all
experiments lasted at least 1000s of model time).

1,000 10,000 50,000 100,000

3.15 s 4.39 s 19.83 s 33.73 s

Table 4.2: Performance after improvements. The duration of execution of 1 s
(model time) simulation according to the network size (with the same density
of synapses). The two smaller networks were measured on “[PC]” (12 threads
were used) and the two larger on “[server]” (32 threads were used).

The scalability of simulator performance according to the number of neurons
(with the same density of synapses) is shown also in Figure 4.1. We can see that
the time of execution is approximately linear, which is a good result. Important
factor for the linear dependency is that the firing rate was in all network sizes
very similar.

Besides, we compared the execution time for each part of the simulation cycle.
All these parts have been described in the Section 3.5.2. The results are listed in
the Table 4.3 and Figures 4.1 and 4.2.

3With the exception that here the original form of the Izhikevich neuron model was used.

70

Figure 4.1: The execution time of simulation of 1 s (model time) on networks
with different number of neurons.

NEURONS INP DET PROP UPD END LOGS ALL

1,000 0.75 s 0.85 s 0.81 s 0.72 s 0.02 s 0.00 s 3.15 s
10,000 1.51 s 0.98 s 0.95 s 0.83 s 0.11 s 0.00 s 4.38 s
50,000 5.06 s 3.36 s 5.73 s 3.26 s 2.42 s 0.00 s 19.83 s

100,000 7.08 s 6.43 s 9.95 s 5.22 s 5.04 s 0.01 s 33.73 s

Table 4.3: Performance after improvements according to the parts of the simu-
lation cycle. The duration of each part (columns) in s (real time) of execution
of 1 s (model time) simulation according to the network size (rows). The two
smaller networks were measured on “[PC]” (12 threads were used) and the two
larger on “[server]” (32 threads were used).

Figure 4.2: The structure of the execution time of 1 s (model time) according
to the parts to the simulation cycle and network size. The values are based on
the Table 4.3.

4.3 Outcome

The SUSNOIMAC simulator is able to simulate a network with 100 thousand
of neurons and 21 million of synapses in reasonable time (34 times slower than
real-time). A network with 10 thousand of neurons (and 1.6 million of synapses)
is simulated only 4.4 ties slower than real-time. One of the main ways how to ac-
celerate it in the future would be usage of Computer Unified Device Architecture
(CUDA) Graphics Processing Units (GPUs), as it is used e.g. in (Nageswaran
et al., 2009) .

71

5. Model of the Auditory Cortex:
Biology Primer

The auditory cortex (AC) is a part of the auditory system, the sensory system
which provides the sense of hearing (audition). The stimulus triggering auditory
receptors is sound, a mechanical wave with certain frequency and amplitude.
The frequency (with units called Hz) of the sound wave determines the sound
pitch and amplitude determines the intensity (with units called dB). This chapter
describes the basics of the auditory system (again many simplifications were made
to capture just the basic facts). Unless stated otherwise, it is based on (Bear et al.,
2007; Brodal, 2010; Purves et al., 2001; Watson, 2012).

The auditory system starts in ear (see Figure 5.1). The sound waves move the
tympanic membrane in the ear. It moves the ossicles (series of tiny bones in the
middle ear). They move the membrane at the oval window (a membrane covering
a hole in the bone of the skull called oval window), which moves the fluid in the
cochlea. The cochlea contains the apparatus to transform the physical motion of
the oval window membrane into a neuronal response. Subsequently the neuronal
signal is transmitted by the auditory nerve fiber to be processed by a series of
nuclei in the brain stem (e.g., the dorsal cochlear nucleus, ventral cochlear nucle-
us and superior olive, where information from both ears is composed), and the
inferior colliculus in midbrain, where all ascending auditory path ways conver-
ge. Output of the inferior colliculus is transmitted to medial geniculate nucleus
(MGN) in thalamus. Axons leaving the MGN project to the AC.

The auditory cortex (see Figures 5.2 and 5.3) consists of several areas. The
number of these areas ranges from five in mice (Watson, 2012) to over 30 in some
studies of humans (Malmierca and Hackett, 2010; Stiebler et al., 1997). These
areas may be divided into primary and secondary (belt) areas. An important
primary area, common for many mammals, is the primary auditory cortex (A1).
It is located in the superior temporal gyrus in the temporal lobe (in human) and
receives direct inputs from the MGN. Belt areas of the AC receive more diffused
input from dorsal part of the MGN.

The A1 consists of six layers. Layer L4 is the main recipient of the inputs from
thalamus. Layers L2 and L3 (often marked together as L2/3) are largely inner-
vated by L4 projections from L4 and they send outputs to other cortical regions
for intercortical processing, while L5 neurons receive relayed information from
L2/3 and project to various subcortical nuclei to modulate subcortical responses
(Wu et al., 2011; Mitani and Shimokouchi, 1985; Winer and Prieto, 2001; Winer,
2005; Barbour and Callaway, 2008). Layer 6 sends cortical feedback specifically
to the thalamus (Ojima, 1994; Prieto and Winer, 1999; Winer, 2005). Layer L1
is relatively sparse and seems to receive also a direct thalamic input (Mitani and
Shimokouchi, 1985; Huang and Winer, 2000; Zhu and Zhu, 2004; Theyel et al.,
2010), although the functional significance of this input remains unclear. Also L6
is weakly innervated by thalamus (Wu et al., 2011; Cruikshank et al., 2002).

72

Figure 5.1: A diagram of the human ear. From (Brockmann, 2009).

Figure 5.2: A diagram of the human brain showing the Primary Auditory
Cortex and surface gyri: Angular Gyrus, Supramarginal Gyrus, Bro-
ca’s Area, and Wernicke’s Area. From (wikipedia.org, 2007c).

Figure 5.3: A coronal section of a human brain: BA41 and BA42 belong to
the Primary Auditory Cortex, BA22 is Brodmann ara 22, and HF is hippo-
campal formation. From (Talbot, 2011).

73

One of the main features of A1 is the tonotopic organization, analogous to
retinotopic organization in the visual system. It means that many neurons in A1
are relatively sharply tuned for a particular sound frequency (called characteristic
frequency, or best frequency1) and these characteristic frequencies are organized
from low frequencies (in the human brain represented rostrally and laterally) to
high frequencies (represented caudally and medially). This columnar organisation
is sometimes referred to as isofrequency bands, running mediolaterally across A1.
The tonotopic organization does not occur first in the AC, but originates from
cochlea and is more or less maintained throughout the entire auditory pathway.

In addition to the frequency tuning, some neurons in A1 are tuned to a particu-
lar intensity. However, other neurons are barely tuned at all. Although reactions
to variety of sound inputs (such as clicks, bursts of noise, frequency modulated
(FM) sounds and amplitude modulated (AM) sounds, vocalizations, or even mo-
re complex sounds) are intensively researched, the processing of complex sound
stimuli is still one of the currently faced challenges.

1The characteristic frequency (CF) is typically defined as the frequency, at which a least
intensity is needed to stimulate it. The best frequency (BF) is typically the frequency, which
leads to the highest activity of the neuron. However, sometimes also other definitions are used
(we will also use an adjusted one later).

74

6. Model of the Auditory Cortex:
Motivation and Related Works

This chapter is divided into three sections. In the first section we outline, what led
us to create a model of the AC. The second section lists other published models
of the AC, summarizes their major achievements and limitations and explains a
need of the model designed in this thesis. The third section lays out the main
features (requirements) of the model and explains the reasons for them.

Although, in this chapter, we write about models of the AC in general (e.g.,
some reviewed models concern human A1, one even bird analogous to the AC),
the rest of the thesis concerns mainly the AC of mice.

6.1 Motivation

There are many unanswered questions about the AC. The fundamental question
is how the auditory perception is coded, represented, and how the AC works at
all. However, this question is very complex and complicated and even many of its
sub-questions are still poorly understood. For instance, how is the spontaneous
activity influenced by stimuli? How do different stimuli affect the features of the
AC, such as receptive fields of neurons, their best frequencies or characteristic
frequencies? How are the sounds coded and represented in the AC? Is there any
specific and easy-to-describe representation for auditory objects1? Are auditory
objects that are behaviourally important, represented differently? What role do
the single neurons versus neuron populations play in these tasks? Other questions
concern auditory disorders (Polster and Rose, 1998, e.g., cortical deafness, or
auditory agnosia: see), or disease symptoms (e.g. tinnitus, which may be defined
as “conscious experience of a sound that originates in the head or neck, and
without voluntary origin obvious to person” (McCombe et al., 2001; McFadden,
1982).): where and why do they origin and by which neuronal features are they
influenced by? These questions are intensively researched by in vivo and in vitro
experiments. However, an additional method in the form of in silico experiments
on a computational model could be very beneficial. It could be rewarding at least
in the following applications:

1. Experiments, which are long or their conduction in real conditions is costly.

2. Experiments, which are impossible to run in real conditions (e.g., due to
inaccurate or insufficient imaging techniques, or ethic).

3. To verify a hypothesis (which cannot be verified in real conditions) or a
conceptual model. For instance: Is our concept of mechanisms of a certain
function/phenomena right?

1“An auditory object might be defined as an acoustic experience that produces a two-
dimensional image with frequency and time dimensions.” (Griffiths and Warren, 2004) As a
practical example, it can be a voice of a particular individual, or sound of a musical instrument.

75

Besides these general questions, another motivation for a computational model
of the AC was a hypothesis on emergence of tonotopy. Author of this hypothesis
is Jakub Tomek. The following subsection describes his hypothesis.

6.1.1 Hypothesis on emergence of tonotopy

One of the well-known features of the AC is the tonotopic organization based on
tuning to sound frequency. The tonotopic maps can be observed using large-scale
imaging techniques and multi-unit recordings (Bizley et al., 2005; Nelken et al.,
2004; Stiebler et al., 1997). However, with improving possibilities of fine-scale
imaging and recording techniques (such as in vivo two-photon calcium imaging),
surprising lack of tonotopic homogeneity on the fine scale was revealed (Bandyo-
padhyay et al., 2010; Rothschild et al., 2010). Since then, the local heterogeneity
attracted attention of many auditory neuroscientists, but the mechanisms of its
development are still poorly understood.

We propose a hypothesis, that the coarse tonotopy, but local heterogeneity
in all layers of the AC may be an emergent result of tonotopic input from the
thalamus and long-term plasticity, which could play a key role in this process.

A mouse brain develops most rapidly during the first month after birth (Oswald
and Reyes, 2008) (this period is typically called critical period). Several studies
researched the impact of sound listened during this period on the resulting to-
notopy. When noise was played to mice throughout the critical period, it led to
a severe impairment of tonotopy in the AC (Chang and Merzenich, 2003; Zhang
et al., 2002). On the contrary, in the normal conditions, the tonotopy emerged,
but only coarsed. Other experiments with pure tones (monotone stimuli) were
conducted and indicated that their number and frequency may also have impact
on the resulting receptive fields and state of tonotopy (Zhang et al., 2001).

We propose that the development of the AC can be viewed as follows: The
starting point of the system is the tonotopic input to L4, with other layers rather
chaotic (or “randomly”) initialized. Then, when a stimulus is played to the animal,
the relevant part of inputs starts “conquering” zones in the formerly chaotic part
of brain via mechanisms of brain plasticity (e.g., STDP). By “conquering”, we
mean enlargement of the zone responding to a given stimulus.

This view is in good agreement with the observation above: noise should lead
to development of very weak tonotopy and exposition to only a few pure tones
should lead to a rather weak tonotopy as well. The critical period in animals is
probably being optimized towards “natural” sounds, i.e., when the animal hears
ordinary sounds, the brain develops in a useful way. However, when only a several
tones are being heard by the animal, the critical learning period is too short for
the zones belonging to the several tones to “conquer” the whole possible area of
the AC, therefore keeping a lot of the original chaotic organization.

6.2 Related Works

This section reviews the existing models of the AC: exactly the AC, or part of the
AC (typically A1), or on the contrary a larger model with more auditory stages
and AC being one of them. Models of lower stages of the auditory pathways

76

without AC are not included, but they can be found in existing well-arranged
and detailed reviews (Meddis, 2010; Greenberg, 2001).

Although the AC hides many secrets, which could be revealed using compu-
tational models, the modelling of the AC is relatively unexplored area. There are
several models published, but their number is much lower than e.g., in visual
cortex, or lower stages of the auditory pathways. Moreover, to our knowledge,
no synoptic review of the AC computational models with spiking neurons exists.
The only review of AC models, which we are aware of, was written by Eggermont
(Eggermont, 2010) and concerns only more abstract or conceptual models (high-
level using the terminology from the Section 1.2.1). Therefore, the review, which
we provide in this section, is in some way the first of its kind.

We divided the computational AC models into three groups: the spiking neu-
ron models, the firing rate models, and other models, typically more abstract. The
first group is closest to our aim; therefore we will describe them slightly more in
depth. On the contrary, the third group is the farer one and we will describe only
two representatives from this group even though this group is larger and contains
for instance a specific class of computational models focusing on auditory scene
analysis (Brown and Cooke, 1994; Fodróczi and Radványi, 2006, e.g.,), which we
do not describe in this text.

We also do not describe the conceptual non-computational models, such as
models of long-term memory traces in the A1 (Weinberger et al., 1990; Suga and
Ma, 2003, e.g.,), models of hierarchic representation of auditory objects in the AC
(Sharpee et al., 2011, e.g.,), or general models of representation, transformation,
and coding of sound in the A1 (Eggermont, 2001, e.g.,).

The aim of the following text is not to provide an exhausting description of
the computational AC models, performed experiments and their results. This
information is (typically) provided in the referred publications. Instead, goal of
this text is to summarize the basic features:

1. Motivation for the model

2. A basic description of the model: populations of neurons, number of mo-
delled neurons, main characteristics of the connectome, and the used models
(dynamics) of neurons, synapses and possibly channels

3. Other information about simulation, such as method of model computing,
or time step (we include these information, only if they are provided by the
referred publications)

In addition to that, in the case where it is possible (and where it would not
require long explanations), we try to summarize also:

1. Main measured features and performed experiments

2. Some main results, which are clear enough to be summarized in few sen-
tences

77

6.2.1 The spiking neuron models

6.2.1.1 Model by Pinho, Mazza and Roque (1999–2006)

This model was gradually developed and published in (de Pinho and Roque-da
Silva, 1999; de Pinho et al., 2000, 2001, 2002, 2006), all versions were generally
similar with minor differences or different experiments conducted. The version
from 2006 is the most extended one and we will therefore base the following
description on this version. The model contains four structures: cochlea, MGVBv,
MGVBm, and A1. Cochlea is modelled as 47-receptor linear layer. Each MGBv
and MGBm contains 564 excitatory relay cells and 186 inhibitory cells arranged
in an array. The A1 area contains 3384 excitatory pyramidal cells, arranged in an
array of 188 × 12 nodes, and 1128 inhibitory basket cells, arranges in an array of
94 ×12 nodes. The connectome is based on specified probabilities, such as that
“each pyramidal cell is connected to itself and all pyramidal cells in its first ring
of neighbours and has a probability of 50% of being connected to pyramidal cells
in its second ring of neighbours” (de Pinho et al., 2006). The description of the
connectome is detailed enough for reproductions of the model. On the contrary,
the neuron models are described only approximately by basic features: number
of compartments (1–6), types of ionic channels and receptors (AMPA, NMDA,
and GABA). The only details of the used neuron models can be found in the first
version (de Pinho and Roque-da Silva, 1999), but the reproducibility from this
description would be limited.

Most experiments done with the model are related to tonotopic organisation
of cortical neurons and influence of NMDA receptors on this organisation. The
description of the experiments and their results do not contain many details. Each
experiment lasted in order of few seconds of the model time.

6.2.1.2 Model by Larson, Billimoria, Perrone, and Sen (2008, 2010)

The model was published in (Larson et al., 2008, 2010). The motivation for this
model was to design and implement a neural circuit capable of songbird recogni-
tion. In (Larson et al., 2008), authors proposed 3 possible solutions (a coincidence
detection circuit, a rate detection circuit, and a vR circuit with 3 LIF neurons)
and in (Larson et al., 2010) an extended model with chain of 20 LIF neurons. The
basic idea is the computation of dissimilarities between spike trains using the van
Rossum spike distance metric (Rossum, 2001). The synaptic connections between
neurons have specified conduction delays and the synapse weights are modified
by STDP. The spike trains recorded from field L (an analogous to the auditory
cortex in mammals) of zebra finch were used as model inputs. The model was
tested on 100 repetitions of 20 zebra finch songs truncated to 820 ms and achieved
relatively high performance (>98% accuracy) in the given task.

6.2.1.3 Model by Zhou et al. (2012)

The motivations for the model (Zhou et al., 2012) were questions about spike
latency tuning: how is it generated, what role does in it play the background
spontaneous activity, or what is the relation between cortical and thalamic la-
tency tuning and. The model consisted of four layers, each containing 800 cells:
thalamic neurons, inhibitory interneurons, excitatory interneuron, and pyramidal

78

neurons. The connections were deterministic. All the cortical cells were modelled
as LIF neurons. The input consisted of background activity modelled as a train of
Poisson events. Several features concerning spike latency tuning were measured
(comparison between neuronal populations, impact of the background activity,
etc.). The main results from both the model and in vivo observations were rela-
ted to influence of inhibition and excitation on spike latency tuning at optimal
and off-optimal frequencies.

6.2.1.4 Model by Chrostowski et al (2011)

The motivation for the model (Chrostowski et al., 2011) was to explore the condi-
tions under which travelling waves occur in the AC and their relation to hearing
loss. The model consisted of the thalamus layer with 201 neurons, and the A1
layer with 201 pyramidal neurons 67 inhibitory interneurons. Neurons in all the
three populations were uniformly distributed along the latero-medial tonotopic
axis. The connectome was deterministic and initial synaptic weight was defined
as a Gaussian function of distance. All cortical neurons were modelled as LIF
neurons. A novel mechanism of homeostatic plasticity of synaptic weights was
designed and used, but no other types of plasticity (e.g., Hebbian-like such as
STDP) were used. Inputs from thalamus were generated as Poisson process. Be-
sides, the effects of peripheral hearing loss were modelled by reduction of thala-
mic inputs at impaired frequencies. Four degrees of hearing loss were researched.
Model equations were solved numerically using Runge-Kutta method and fixed
time-step of 0.1 ms.

During simulations, several features were measured, such as distribution of the
synaptic weights, mean firing rate, cross-correlation of spike trains, or occurrence
of travelling waves in dependence of degree of hearing loss. One of the main results
were qualitatively same changes after hearing loss as in real (except of differences
in several features, such as shifts in characteristic frequency) and observation that
spontaneous activity prevents the development of long-range travelling waves of
excitation.

6.2.2 The firing rate models

6.2.2.1 Model by Harris et al. (2011)

The motivation for the model (Harris et al., 2011) was to search for reasons in
complex dependence of sensory responses on dynamic and activity states at the
time of stimulus presentation. The main goal of the model was to show, that
sensory responses are shaped by the same dynamics that generate spontaneous
activity prior to stimulus presentation. The model was based on two Fitzhugh-
Nagumo equations (FitzHugh, 1955) with two variables v (average population
firing rate) and w (related to reducing network excitability) and 5 parameters.
The ability of the model to predict the structure of activity after sensory stimulus
was tested and compared to MUA (multi-unit-activity) and LFP recordings.

79

6.2.2.2 Model by Schiff, Reyes, de La Rocha, and Marchetti (2008,
2011)

The motivation for the model (Schiff and Reyes, 2012) was to examine how fe-
edforward inhibition and synaptic depression affect cortical responses to time-
varying inputs that mimic sinusoidal amplitude-modulated tones. As a predeces-
sor if this model can be identified a firing rate model designed four year before
this one (de la Rocha et al., 2008). The model consisted of three populations: one
layer of 50 thalamic neurons, population of excitatory neurons (E) and populati-
on of inhibitory neurons (I), both with firing rate dynamics (de la Rocha et al.,
2008; Wilson and Cowan, 1972). Both the connectome and inputs are clearly de-
scribed with all necessary details. The thalamic neurons were evenly distributed
along a one-dimensional tonotopic axis and had only a transfer function to the
two other populations (input to I was to times stronger than to E). In addition to
that, I inhibited E. Synaptic weights were influenced by a short-term depression.
The parameters of the model were adjusted to preserve differences in RS and FS
cells observed experimentally (e.g., their f-I curves, strength of thalamic input,
and degree of thalamic short-term depression). Differential equations were solved
numerically with the forward Euler method with a fixed time step 0.1 ms. All
experiments lasted up to 1000 ms of the model time.

6.2.2.3 Model by Loebel, Nelken and Tsodyks (2007)

The motivation for the model (Loebel et al., 2007) was to explore the hypothesis
that temporally locked spiking activity of A1 neurons in response to auditory
stimuli reflects the near coincident activity of ensembles of neurons with similar
best frequency. They supposed that this temporal coherence emerges from in-
trinsic properties of the intracortical circuitry (such as short-term depression at
recurrent excitatory connections). Besides, the model was designed to explore the
influence of sharp transient synchronization of network activity (called Population
Spike). The model consisted of 15 cortical iso-frequency columns; each simula-
ted by a fully connected recurrent network of 100 excitatory and 100 inhibitory
neurons with firing rate model dynamics (Wilson and Cowan, 1972). In addition
to connections within a column, neurons from nearby columns (distance up to 2
columns) were connected. Synaptic connections were influenced by the short-term
plasticity. All necessary details about dynamics, connectivity, and inputs (senso-
ry inputs were introduced only to excitatory neurons, but all neurons received
a background input leading to spontaneous activity) are described sufficiently
for reproductions. Many characteristic were measured, such as frequency tuning
curves, features of excitatory and inhibitory responses (e.g., temporal ordering),
two-tone interactions, or response to frequency modulated sweeps.

6.2.2.4 Model by Bart, Bao, and Holcman (2005)

Motivation for the model (Bart et al., 2005) was to determine how neural con-
nections may influence EEG dynamics and to elucidate how epileptic regime in
the AC can emerge. The model consisted of 100 firing-rate neurons (similar to
(Wilson and Cowan, 1972), but different). The synaptic connections were genera-
ted according to the distribution described in (Bao et al., 2003) and their weight

80

was directly proportional to the length of the connection (distance of the presyna-
ptic and postsynaptic neurons). The synapses were influenced by the short-term
depression. To achieve a spontaneous activity in the network, an additive ran-
dom Brownian noise was modelled and sent to neuron inputs. The differential
equations were solved numerically using the Runge-Kutta-Fehlberg method with
adaptively controlled step size to keep the error low (step size was always kept
below 2 · 10−5s). Several characteristics were measured, such as stability of the
system (a degree of epileptic behaviour), mean voltage, depression rate and syn-
chronization index in dependence on the synaptic weights (weak, normal, and
strong). One of the main results was achievement of two regimes of the sponta-
neous activity (normal and epileptic) with dependence on the synaptic weights.

6.2.3 Other models

6.2.3.1 Model by Otazu and Leibold (2011)

Motivation for the model (Otazu and Leibold, 2011) was to provide a possible
explanation of sound identification in complex scenes. The goal of the model
were not realistic anatomy and morphology features of neural network, but an
computer algorithm, which gets abstract inputs corresponding to the real audito-
ry inputs and recognizes auditory objects in them. Authors proposed an abstract
dictionary-based algorithm called Corrected Projections Algorithm (CPA). It uses
a dictionary of known sounds. The main idea is the minimization of the difference
between the sensory representation of the incoming sound and an internal esti-
mate to identify sources present in the auditory scene. In addition to measured
success of the model in the object recognition task, they analysed simple featu-
res of neurons (such as number of spikes during spontaneous activity versus in
response to a repetitive sound stimulus) in the rat AC. These recordings showed
several similarities to the proposed model suggesting that the thalamocortical
circuit may implement an iterative version of the proposed CPA algorithm.

6.2.3.2 Model by Mesgarani, Fritz, and Shamma (2009)

Motivation for the model (Mesgarani et al., 2009) was to catch several features
of receptive field properties of auditory cortex neurons (such as their rapid adap-
tation during discrimination and detection tasks, especially where specific sounds
are related to reward or punishment). Authors proposed a mathematical model
of cortical receptive fields modelled as filters that change their spectro-temporal
tuning properties in order to extract the discriminatory features relevant to the
ongoing behavioural task. The model was compared to the in vivo observations of
plasticity of the receptive fields of the neurons in the ferrets AC during different
types of spectral and temporal discrimination tasks (such as detecting a tone or
multiple tones against a contrasting background of spectro-temporally modula-
ted noise, or discriminating between tones of different frequencies or rates). The
model predicted generally the same results as the physiological data: the plasti-
city effect for cells tuned to frequencies near the target tone is bigger when the
reference and target are more distinct.

81

6.2.4 Concluding remarks to the related works

To conclude the review of the AC models, the most accurate (i.e., with many
measured characteristics and their comparison to the real data) and precisely
described computational models of the AC, described in this review, were the
firing rate models. On the contrary, not many spiking neuron models of the AC
exist and those reviewed in this text are very limited (see also the Table 6.1) in
the following features2:

1. Size (up to 4600 neurons)

2. Detailed connectome based on the real data

3. Diversity of neuron types (only one excitatory and one inhibitory, e.g., py-
ramidal and basket cells)

4. Model of neuron: except of the model by Pinho, the model type was a
simple leaky integrate-and-fire model (LIF, I&F), which has very limited
plausibility – citing Izhikevich “. . . the model [I&F] cannot exhibit even the
most fundamental properties of cortical spiking neurons, and for this reason
it should be avoided by all means. The only advantage of the I&F model
is that it is linear, and hence amenable to mathematical analysis. If no
attempts to derive analytical results are made, then there is no excuse for
using this model in simulations.” (Izhikevich et al., 2004a)

5. Synaptic plasticity (only short-term, if any)

6. Validation and comparison to the real observations

7. Duration of simulations (up to few seconds)

Main author Size Neuron
types

Neuron
model

Synaptic
plasticity

Duration

Pinho et al. 4512 p, b HH-type - up to few s
Larson et al. 20 E LIF STDP up to few s
Zhou et al. 2400 E, I, p LIF - up to few s
Chrostowski et al. 268 p, I LIF homeostatic up to 30s

Table 6.1: Comparison of the existing spiking models of the AC. Size: number
of neurons in the AC part of the model. Neuron types: neuron types in the AC
part of the model (p=pyramidal, b=basket, E=general excitatory, I=general
inhibitory). Neuron model: used model for the neurons in the AC parth of the
model. Synaptic plasticity. Duration: duration of performed experiments.

On the other hand, models, which fulfil all these features, but do not focus on
the AC, exist: for instance the large-scale (with 106 neurons and almost 5 · 108

synapses) model of mammalian thalamocortical system by Izhikevich and Edel-
man (Izhikevich and Edelman, 2008). This model exhibits several features of the
real mammalian cortex, such as emergence of waves and rhythms. However, the

2Not each of them is limited in all listed features, but each in at least several of them.

82

model was observed only during the spontaneous activity with no other specific
sensory inputs.

Therefore, we decided to fill up these two gaps and design and implement a
model of the AC, based on the thalamocortical model proposed by Izhikevich and
Edelman (Izhikevich and Edelman, 2008), but adjusted to the features of the AC
(mainly mouse AC, because of the access to the data from AC of mice) and sound
inputs from the auditory thalamus.

6.3 Model features

Finally, we will conclude this introductory chapter about our model with the
features, which we considered to be important for the model. All subsequent
works (simulator choice and development, and model design and implementation)
were subordinated to these features.

The chosen features of the model are identical as the first group of simulator
requirements, described in the Chapter 2, and the simulator software was deve-
loped to meet all these conditions. For convenience, we will list them again and
explain the reasons for including them:

1. The generalized form of the Izhikevich neuron model.

2. Synaptic connections with specified synaptic conduction delays and chan-
geable weights, formed by the long-term plasticity, e.g. STDP.

3. Sufficient computational precision.

4. Sufficient flexibility in network structure definition: e.g., different proba-
bilities of synaptic connections between specific neuron types in specific
dependence on distance (for instance as it is in (Izhikevich and Edelman,
2008)).

5. Sufficient flexibility in definition of the network inputs: e.g., each tick ano-
ther neurons will be stimulated with value specified for each neuron.

6. A mechanism, which would lead to spontaneous activity, e.g., the mPSCs.

Each requirement/feature was selected for carefully considered reasons:

1. The Izhikevich neuron model was chosen for the (to our knowledge) optimal
ratio between plausibility and computational efficiency and to its ability to
reproduce the behaviour of the main neuronal types in the auditory cortex:
regular spiking (RS) neurons, fast spiking (FS) neurons, and low-threshold
spiking (LTS) neurons.

2. The synaptic connection delays play a crucial rule in coding information:
they lead to significantly increased information capacity and specific stable
firing patterns, which would be impossible without delays (Izhikevich, 2006).
The synaptic weights are fundamental for development and memory of the
network. The long-term plasticity is vital in research long-term changes,
such as those in the hypothesis on emergence of tonotopy. STDP is a widely
used form of long-term plasticity.

83

3. Precision is important for the reliability of the results. However, a higher
precision usually leads to a higher computational cost, so a compromise
must be done.

4. The flexibility in network definition is needed to reflect the diversity of the
real network.

5. The flexibility in definition of the network inputs is necessary to stimulate
the network with inputs corresponding to the inputs from thalamus.

6. Spontaneous activity supposedly plays a critical role in higher cognitive
processes, such as decision making or working memory (Wang, 2003) and
in synaptic maturation during development (Gonzalez-Islas and Wenner,
2006).

We believe that having a computational model of the AC using the state-of-the
art computational techniques could help in searching for answers to many of the
unexplained phenomena in the processing the sound stimuli. Naturally, creating a
state-of-the art model of the AC requires not only good modelling techniques and
software, but also a comprehensive knowledge of the AC, types of experiments
(which are run in real conditions and could be run also on the model to compare
the results), typical results of these experiments, huge amount of accurate data,
and many other things. Therefore, this thesis suggests rather a basic version of
such a model. However, it may be extended: the approximate parameters (e.g.,
based on non-auditory parts of cortex) may be replaced by the more accurate
data, when these are researched, and the developed simulation software and tools
for results analysis can be used without changes.

84

7. Model of the Auditory Cortex:
Methods

This section describes the created model. It follows the guidelines suggested in
(Nordlie et al., 2009), which, as we hope, will help to make the description well
comprehensible and reproducible.

The model is based on two models by Izhikevich (Izhikevich and Edelman,
2008; Izhikevich, 2006) and adjusted to the AC features (inputs, spontaneous
activity and some other intrinsic parameters). Although we call it model of AC, it
represents mainly the part of the primary auditory cortex (and only from one half
of the brain). The model has several groups of parameters: general parameters,
parameters related to neuron types, connections, or layers. We will describe them
successively at that part of the text, where they are first needed. However, their
synoptic list with all descriptions is placed in the end of the chapter, as well as
the used values.

The model was implemented in the SUSNOIMAC simulator, which is descri-
bed in the Chapter 3. Let us mention that all used parameters may be easily
changed in settings files and even the numbers of neuron types and layers may
be both increased (then the relevant parameters of the added neuron types and
layers must be specified), or decreased (then the relevant parameters must be
removed). This makes the implementation easily extensible for possible fitting to
more accurate data.

7.1 Model composition

The model uses 6 layers, but layers 2 and 3 are treated as one layer (that is a
common approach, because the distinction between these layers in real cortex is
not clear (DeFelipe et al., 2002)). Parameters of the layers are listed in the Table
7.1. The layer names of used layers are: L1, L2/3, L4, L5, and L6. Only the layer
L4 is an input layer.

Label Type Description

layer string name of the layer
thickness integer thickness of the layer (in µm)
input boolean true, if it contains input neurons

Table 7.1: The parameters of each layer in the model.

The neurons are distinguished according to the populations, called neuron
types. Parameters of the neuron types are listed in the Table 7.2. All neurons
of the same neuron type lie in the same layer of the cortex and have the same
parameters of the neuron model – the generalized form of the Izhikevich neuron
model (Izhikevich, 2007; Izhikevich and Edelman, 2008). The number of neurons
of this type is specified in percentage with the name cells, i.e. the resulting
number of neurons of this type is cells*N NEURONS, where N NEURONS is the total
number of neurons in the network and it is a general parameter of the model.

85

Label Type Description

name String name of the neuron type
layer Integer layer, in which the neurons of this

type lie
cells Integer percentage of neurons of this type
type String additional information
excitatory Boolean true for excitatory, false for inhi-

bitory
Cap, k,

vr, vt,

vp, a, b,

c, d

Double parameters of the Izhikevich neu-
ron model

Table 7.2: The parameters of each neuron type in the model.

In addition to these parameters, each neuron type has a specified area reached
by its axon (and its terminals). This area is specified as an axonal radius (in µm)
for each layer of the network (see Figure 7.1). We will refer to these values as
table X0, where X0[T][L] means value of axonal radius of neuron type T in layer
L. These values are used during generation of synaptic connections: a synapse
can be created only between such neurons, where soma of postsynaptic neuron is
reached by axonal area of presynaptic neuron. This is a simplification based on
(Izhikevich and Edelman, 2008).

Figure 7.1: An example of an axonal area. It is in each layer specified by the
value of R: radius of the axonal area in this layer.

The concrete parameters of used 17 neuron types are listed in the Section 7.8.
The parameter type (additional information) is used to distinguish between 4
cell types:

1. pyramidal neurons (p): they exhibit regular spiking (RS), or sometimes
chattering (CH), or intrinsically bursting (IB) firing patterns (Connors and
Gutnick, 1990; Contreras, 2004)

2. spiny stellate neurons (ss): they exhibit RS firing patterns (Contreras, 2004)

3. basket interneurons (b): they exhibit fast spiking (FS) firing patterns (Con-
nors and Gutnick, 1990; Contreras, 2004)

86

4. non-basket interneurons (nb), which morphologically include double-bouquet
cells, neurogliaform cells, and Martinotti cells (Binzegger et al., 2004) and
can exhibit low threshold spiking (LTS) firing pattern (Beierlein et al.,
2003), latent spiking (LS) and other firing patterns (Kawaguchi, 1995; Ka-
waguchi and Kubota, 1997; Markram et al., 2004)

The names of neuron types are based on nomenclature as in (Izhikevich and
Edelman, 2008; Beierlein et al., 2003), where the first part is the cell type (b, nb,
p, ss), the second part is the layer and optional third part in brackets is the layer,
to which the neuron projects (only in ss and p neurons), for example p5(L2/3)

means pyramidal neurons in L5 that project (mainly) to L2/3.
The algorithm for initializing neurons, their locations and other parameters

is described in the Pseudocode 7.1. The locations are generated randomly in
the relevant layer, but in such a way that neurons do not overlap. Here, the
general parameter RADIUS is used (all neuron’s use the same parameter radius).
By neuron’s location we mean the location of neuron’s soma. Other parameters
are used according to the neuron type.

1. i=0;

2. For each neuron type T:

(a) N T ← T.cells * N NEURONS / 100;

(b) For j from 0 to N T:

i. Create a neuron with the following parameters:

A. number i

B. random location in the layer T.layer, which does

not overlap any previous neuron

C. T.excitatory

D. T.layer

E. membrane potential T.vr and membrane recovery 0

F. parameters T.Cap, T.cr, T.vt, T.vp, T.a, T.b,

T.c and T.b

ii. If (T.layer is input layer) then

A. add the created neuron to a band

neuron.location.y / BAND WIDTH

iii. i++;

Pseudocode 7.1: The algorithm of the generation of neurons in the model.

87

7.2 Coordinate systems and topology

All neurons are numbered from interval 〈0, N NEURONS), each neuron having
a unique number. According to the coordinate systems listed in (Nordlie et al.,
2009) we use the anatomical coordinates, because population (neuron type) de-
termines the layer within the AC and each neuron has a location that refers to
position in the AC.

7.3 Connectivity

The connectivity mechanism is based on the mechanism described in (Izhikevich
and Edelman, 2008). However, the connectivity is not explained there in details
sufficient for reimplementation (this opinion has been voiced also by Nordlie (Nor-
dlie et al., 2009)). Therefore we proposed (in cooperation with neuroscientists)
additional mechanisms and algorithms to make a clearly defined connectivity.

Since the connectivity mechanisms are not trivial and we want to describe
all topics related to them with enough details (sufficient for reimplementation
and with enough explanations), the section is divided into several subsections.
First, the required data are described. The following 4 subsections address the
problems, which were necessary to solve: which neurons should be connected,
how to set the synaptic conductance delays and how to initialize the synaptic
weights. The Subsection 7.3.5 describes the proposed connectivity algorithm in
the basic form and extended by one improvement. The Subsection 7.3.6 concern
the possible pitfalls.

7.3.1 Connectivity data

The connectivity mechanism uses two tables. First table (table X1) defines for
each neuron type T the recommended number of synapses which lead to each
neuron of this type. We will call this number X1[T].

Second table (table X2) has three dimensions: postsynaptic neuron type
T post, presynaptic neuron type T pre, and layer L of the synapse location. The
value X2[T post][T pre][L] means that each neuron of type T post should receive
X2[T post][T pre][L] % of its synapses from neurons of type T pre in layer L.
The range of the values in this table is 〈0, 100〉. The resulting number of synapses
from T pre neurons to a neuron of T post type in layer L is:

X1[T post] * X2[T post][T pre][L] / 100

7.3.2 Selecting presynaptic candidates

7.3.2.1 Selecting presynaptic candidates – description

In the algorithm of generating connectivity, it was necessary to solve the following
situation. The tables X1 and X2 determine the number of synapses to neuron
N post (of type T post) from neurons of type T pre in the layer L. Let S be
this number. As presynaptic neurons may be chosen only those, who are near
enough – for simplicity only those, of which axonal radius in layer L reaches the
soma of the neuron N post. The nearer neurons should have higher probability

88

of connection than the distant ones (Izhikevich and Edelman, 2008; Levy and
Reyes, 2012). For simplicity we can consider that this probability will linearly
decay from the centre of the circle defined by the axonal radius to a zero value at
the edge (as it is used in (Izhikevich and Edelman, 2008)). The distance d can be
considered only two dimensional (in our coordinate system named as x and y) –
not in the dimension of height (which goes through all layers). This is reasonable
for the fact that if axon goes through a layer (its radius is in this layer nonzero),
then the distance from the axis of the axon should be considered. As a metric,
the Euclidean distance (Black, 2004) can be used. For simplicity, in this model,
axons grow directly vertically. The situation is depicted in the Figure 7.2, the
relevant distance has a label d in the figure.

Figure 7.2: A schema of the possible connections. The neuron N1 is a presy-
naptic neuron and N2a and N2b are postsynaptic neurons. (N2b is a pyramidal
neuron.) Distance d1 and d2 will be used during initialization of the conductan-
ce delays. Distance d is used in computation of probability of the connection.

This means that we have a set K, a set of candidates, from which may lead a
connection to neuron N post, and each candidate N pre has a clearly probability
of this connection. We denote this probability by N pre.P. Subsequently we want
to choose S candidates (presynaptic neurons) from the setK and create a synaptic
connection from these chosen candidates to neuron N pre.

7.3.2.2 Selecting presynaptic candidates – solution

Hence, the situation is simplified to abstract mathematical problem how to se-
lect S elements from set of |K| candidates, where each has a given probability of
selection. One of the typical computer-science solutions of this problem is the Rou-
lette Wheel Selection (used in the Genetic Algorithms, see e.g. (Goldberg, 1989)).
We create roulette with |K| pockets, where pocket N pre has a size N pre.P. Sub-
sequently we throw a ball in the roulette and spin the wheel and the element
(neuron) associated with the winning pocket is selected. The wheel is spun S
times. Therefore we say that we throw (in sum) S balls in the roulette, which
determines S winning candidates. The Roulette Wheel Selection is depicted in
the Figure 7.3.

It is obvious that bigger pockets have bigger probability to be selected. It is
good to consider that we do not mind selecting one candidate more times (this

89

means that more balls fell to the same pocket). In such a case, more synapses
between one pair of neurons are created (we call it a multi-connection), which
corresponds to the reality (see the Section 7.3.6). Besides, the algorithm could
be easily adjusted to avoid multi-connections (e.g., when a pocket is selected, we
remove the pocket from the roulette).

Figure 7.3: A schema of the Roulette Wheel Selection of presynaptic neurons.
Part A of the figure: The from above view on the network. N2 is a postsynaptic
neuron (in the center) and N1a, N1b, N1c, N1d form a set K of possible pre-
synaptic neurons. The probabilities of these connections are respectively: N1a:
0.1, N1b: 0.7, N1c: 0.2, N1d: 0.0 (the axonal area of N1d does not reach N2).
Part B of the figure: a schema of the relevant roulette wheel with pockets corre-
sponding to the presynaptic neurons (and sizes of the pockets corresponding to
the probabilities of the connections from these neurons to N2). Part C of the
figure: the resulting roulette represented as an array.

This algorithm can be easily and effectively implemented. The sizes of pockets
are stored in an array (see part C of the Figure 7.3). Then a throw of a ball into the
roulette means generating one (pseudo)random number from uniform distribution
within an interval 〈0, SUM), where SUM means the sum of all pocket sizes.
Subsequently, the relevant pocket (which corresponds to the generated number)
is looked up and represents the index number of the first selected candidate. This
procedure is repeated S times.

Other solutions may be also possible (e.g., based on Monte-Carlo generating),
but the proposed solution is both correct and effective enough, so we do not

90

consider necessary to present other possible solution. In addition to that, the
performance efficiency is not crucial, since this algorithm is used just once during
the network initialization.

7.3.3 Setting synaptic conductance delays

The synaptic conductance delay should be dependent on the length of the con-
nection and speed of transmission. For simplicity, we will consider the same
transmission speed for all connections (even though the real speed depends on ma-
ny factors, such as myelination, type of connection, distinction between transmis-
sion speed on axon and dendrite, etc.). The length of the connection consists of
two parts: the vertical part along axon (called d1) and horizontal part to the
axon bouton (d2); see Figure 7.2. Also this scheme is very simplified. However,
for a more accurate (and complicated) scheme the concrete real data would be
necessary.

Let N pre be the presynaptic neuron, N post be the postsynaptic neuron and
L be the layer, where the synapse lies. Distance d1 can be defined as Manhattan
distance (also called taxicab distance, city block distance, or rectilinear distance,
see (Black, 2006)) between location of N pre and location L, which is defined as
an axis of the axon of N pre in the middle of layer L. Distance d2 can be defined
as Manhattan distance between L and location of N post.

Besides this deterministic component of the delay, we decided to add a sto-
chastic component in the form of small (pseudo)random perturbation generated
from the uniform distribution within an interval 〈0, DELAY PERTURBATION), whe-
re DELAY PERTURBATION is a general parameter of the model. The resulting value
of delay is bounded from above by the value MAX DELAY, which is also a general
parameter of the model.

7.3.4 Setting synaptic weights

Excitatory synapses (the synapses from excitatory neurons) have non-negative
weights and inhibitory synapses (the synapses from inhibitory neurons) have non-
positive weights. Although in some models, the weight values are dependent on
connection length (e.g., Bart et al., 2005), according to results obtained from
recordings of the mouse primary auditory cortex (Levy and Reyes, 2012), the
synaptic weight does not seem to be correlated with distance between somata.
We therefore do not account this factor in the initial values of synaptic weight.
The resulting initial weight values were chosen as (pseudo)randomly generated
from uniform distribution within an interval 〈0, PARAM W EXC) for excitatory sy-
napses and (-PARAM W INH, 0〉 for inhibitory synapses, where PARAM W EXC and
PARAM W INH are general parameters of the model.

7.3.5 Connectivity algorithm

The resulting algorithm of generating synaptic connections is described in the
Pseudocode 7.1. It is based on mechanisms explained in the previous subsections.
The algorithm contains just the main ideas. In terms of efficiency, it is worth
skipping those passages where one of these values is zero:

91

• AXONAL RADIUS (it means that the axonal area of presynaptic neuron does
not reach the layer L)

• S, i.e. number of balls (it means that no such connection should be created)

• size of the set of candidates (it means that any presynaptic neuron does not
fulfil the condition of the connection)

1. For each postsynaptic neuron type T post, layer L, and

presynaptic neuron type T pre:

(a) S ← X1[T post] * X2[T post][T pre][L] / 100

(b) AXONAL RADIUS ← X0[T pre][L]

(c) For each neuron N post of type T post:

i. Create a roulette of possible presynaptic

candidates: each presynaptic neuron N pre of

type T pre (other than N post) will have a pocket

of size max(0, AXONAL RADIUS -d), where d is an

Euclidean distance from N pre to N post in x and y

coordinates

ii. SUBPROGRAM(roulette, N post)

Pseudocode 7.2: The algorithm of generating the connectome. The Roulette
Wheel Selection is used to select the presynaptic neurons, which will be connec-
ted with N post. Probability of these connections is based on the distance d (see
Figure 7.2. When a roulette is created, the presynaptic neurons are selected via
a process described in the SUBPROGRAM: 7.3.

It is important to realise that the set of candidates can be small or even empty.
If the set is empty, it means that no presynaptic neuron of the right type reaches
the postsynaptic neuron. Then no such connections will be created. This may be
considered as reasonable result. However, if the set is non-empty but small (e.g.,
smaller than S, the number of balls thrown into the roulette), it may lead to
enforced “mega-multi-connections”, such as 100 connections between one pair of
neurons. The resulting network may behave in a very inappropriate way, such as
groups of neurons firing every tick for a long period of time (this is based on our
observations). On the other hand, neither a total prevention of multi-connection
is the best solution (see the Section 7.3.6 for details).

Therefore we proposed a mechanism, which prevents creation of mega-multi-
connections, but does not avoid all multi-connections. This mechanism simply
limits the number of balls S in a single roulette pocket to maximal value of |K|,
the number of candidates (nonzero pockets in the roulette). Therefore, there is
always a possibility of no multi-connections, but in practise a reasonable number
of multi-connections is created.

92

SUBPROGRAM(roulette, N post):

1. S times:

(a) Throw a ball into roulette and call N pre the winning

pocket.

(b) delay ← max(MAX DELAY, 1+round(d1+d2/VELOCITY) +

rand(DELAY PERTURBATION)), where:

i. d1 ← distance between N pre.location.z and z L,

which is z coordinates of the centre of the layer L

ii. d2 ← Manhattan distance between locations

(N pre.location.x, N pre.location.y, z L) and N post

(c) If (N pre is excitatory)

i. weight ← PARAM W EXC*randomDouble {from 〈0,1)}

(d) Else

i. weight ← PARAM W INH*randomDouble {from 〈0,1)}

(e) Create a synapse from N pre to N post with parameters

delay, weight and zero weightDerivate.

Pseudocode 7.3: The algorithm of selecting S presynaptic neurons (which will
be connected with N post), using a roulette created in the Pseudocode 7.2. When
a presynaptic neuron is selected, the synaptic delay and weight are initialized.
The distances d1 and d2 are depicted in Figure 7.2.

93

7.3.6 Possible pitfalls and other features

All mechanisms and the resulting algorithm were based on discussion with neu-
roscientists and considered as reasonable simplification. However, many steps of
the algorithm (detailed principle of connections generating, setting delays and
weights) could be researched furthermore and in more details and compared to
the real data (e.g., in future work).

According to the guidelines proposed in (Nordlie et al., 2009), we should
discuss the three remaining issues (in the guidelines it means questions 5–6 in
paragraph about connectivity, page 13; all other questions have been already
answered in the previous subsections): self-connections, multi-connections, and
boundary effects.

7.3.6.1 Self-connections: “If the same neuron can be selected as pre-
and post-synaptic neuron, is this connection allowed?”

The proposed model does not allow connection from one neuron to the same
neuron. This restriction was decided after consultation with neuroscientists to
prevent the negative and inappropriate effects on dynamics of the whole network.
Recurrence, which is an important feature in both real and artificial neural ne-
tworks, is present in the form of cycles longer than one edge, i.e. loop (using the
terminology from theory of graphs, see Matousek and Nesetril, 1998). However,
extending to model to allow self-connections would be trivial.

7.3.6.2 Multi-connections: “If a pair of pre- and post-synaptic neu-
rons can be chosen more than once, is this connection allowed?”

The proposed model allows such multi-connections between one pair of neu-
rons, but prevents occurrence of “mega-multi-connections” (i.e. high number of
connections between one pair of neurons). This was based on consultation wi-
th neuroscientists, because multi-connections occur in reality, but mega-multi-
connections do not (personal communication with neuroscientists). However, me-
asuring the number of connections between pairs of neurons is methodically dif-
ficult. Therefore it is difficult to decide, which distribution of multi-connections
is plausible.

7.3.6.3 Boundary effects: “How are boundary effects in topological
connections handled?”

The proposed model does not treat the connections on borders differently than
those inside. To analyse possible resulting pitfalls, sometimes called boundary
effects (but we did not find any established exact definition), we should consider,
how could the network behave differently on the network boundaries. First, it is
good to realize, that the number of synaptic connections leading from a neuron
does not influence the behaviour of the neuron in this model. On the contrary, the
number of synaptic connections leading to a neuron is important. Two situations
with a neuron N post situated on a boundary may occur:

1. First, the surroundings of the neuron N post is sufficiently “dense”, i.e.,
contains enough candidates of all needed presynaptic neuron types (at least

94

S for each type). Then the value of S will not be limited and the neuron
N post will receive the same number of synapses as any other neuron of the
same neuron type inside the network. However, the probability of multi-
connections to N post may be higher than to a neuron of the same type
inside the network. It may lead to higher 1 stimulation of N post – in the
case, when presynaptic neuron with multi-connection to N post fires.

2. Second, the surroundings of the neuron N post is rather “sparse” and does
not contain enough candidates of a certain type. Then the number of syna-
ptic connections to N post from the particular neuron type will be lower. If
the presynaptic neuron type is excitatory, then N post may be less stimu-
lated (and more silent for that reason). Otherwise, if this type is inhibitory,
then N post may be more stimulated (and fire more often).

To research, whether one of these situations is significantly represented, we
propose two metrics:

1. The first metric computes a graph of multi-connections in dependency on
distance from the border. This mean that for each neuron N post a point
[x, y] is plotted on, where x is the distance of this neuron from the ne-
twork border (e.g., minimum in all coordinates) and y is number of multi-
connections leading to this neuron (e.g., for each presynaptic neuron N pre
max(0, z), where z is a number of synapses from N pre to N post). Sub-
sequently the metric measures how descending the dependency is (e.g., by
fitting it to a certain function, or simply by subjective observation) In the
case that this dependency is clearly descending, i.e., the closer to border,
the more multi-connections are present, then we should consider possible
negative effects leading from this fact.

2. The second metric computes a similar graph, but with that difference that
y is a number of absent connections. Again, if this dependency is clearly
descending, i.e., the closer to border, the more connections are absent, then
we should consider possible negative effects leading from this fact.

If one or both of these metrics indicates possible negative effects, it would be
good to consider how to prevent these negative effects. We propose four possible
solutions and describe their advantages and disadvantages:

1. In the first solution, the synaptic connections are additionally generated
(instead of missing connections or superfluous multi-connections) from near
(or distant) neurons, from which any connection does not lead yet. The
prerequisite for this solution is sufficient number of candidates of all needed
presynaptic types (otherwise distant presynaptic neurons must be used). To
our knowledge, it does not reflect the reality. However it would have good
results according both proposed metrics and it could prevent the origin of
the described negative effects.

1Or lower, it depends on whether presynaptic neurons with multi-connections to N post are
rather excitatory or inhibitory.

95

2. In the second solution, the network is mapped on a ring (Vida et al., 2006;
Tsodyks and Sejnowski, 1995), torus (Percha et al., 2005; Mehring et al.,
2003), or sphere (Izhikevich et al., 2004a). Since this solution removes boun-
daries, any boundary effects can not happen. On the other hand, unnatu-
rally connecting neurons which are actually very distant is absolutely im-
plausible and could significantly influence the results of such models, where
this distance is somehow important. This is the case of the AC, where to-
notopy is arranged along one axis of the network. In this solution, neurons,
which prefer low input frequencies, would stimulate neurons, which prefer
high input frequencies, and vice versa. For this reason, we assume that this
solution is not suitable for the case of the AC.

3. In the third solution, a boundary of void neurons, which are simulated like
all other neurons but whose output is not considered in the analysis, is
attached to the network (Worgotter and Koch, 1991). This solution can
be easily implemented only by analysing the inner neurons. On the other
hand, it is a rather expensive method, because it spends significant amount
of time for simulating neurons, which are not considered in the analysis and
therefore the resulting number of (analysed) neurons is smaller.

4. In the fourth solution, the inputs from other parts of the nervous system are
modelled. We consider this solution as the best one in terms of plausibility,
because it represents the real situation. However, in terms of feasibility, it is
probably the most demanding solution, because it requires the knowledge
of inputs from other parts of the nervous system. Should they be modelled
as some kind of noise? Should they be defined according to some recorded
data? What should be their exact definition? For a computer scientist, it
may seem that recording such inputs (e.g., in the case of the AC) is easy
and apparent. However, in reality, it is already very difficult to define the
border of the AC (or primary auditory cortex). Recording the data on the
border and recognizing which firings is caused by a stimulus outside the
AC is even more difficult. In the case of modelling the inputs in the form
of some kind of random noise, one must be very careful not to introduce
by this noise any other negative effects, possibly worse than the original
boundary effects.

To conclude the topic of boundary effects and solutions how to prevent these
effects, we assume that the first two solutions are not sufficiently plausible for
the AC model. The third solution could be used, but would decrease the number
of analysed neurons (or it would increase the computational demands). The last
solution would be probably the best one, if one had the required data. However,
for a proper analysis of this problem, it would be very rewarding to know the con-
nectivity on the boundaries of the real network. It is possible that the connectivity
in the real network is also different on the boundaries (either it is sparser, or more
multi-connections are present) and therefore the possible boundary effect in the
model are a feature instead of “a bug” (incorrect behaviour).

96

7.4 Neurons, synapses, and channels

All neurons are single-compartmental and they are modelled by the generalized
form of the Izhikevich neuron model (Izhikevich, 2007), described already in the
Chapter 1. The parameters of the equations are determined by the neuron type
(see the Section 7.1 for definition of the used neuron types and the Section 7.8
for the used parameters). The synaptic conduction delays are static (they do not
change over time). The synaptic weights evolve according to the STDP, described
in the Chapter 1. All implementation details can be found in the Chapter 3 with
simulator description. We do not use any specific model of ion channels.

7.5 Model input, output, and free parameters

We use two kinds of inputs: first, the external inputs from the thalamus, and
second, the internal inputs in the form of mPSCs. The latter are not actually
inputs, but an internal mechanism leading to spontaneous activity. Inputs from
other parts of the brain are not modelled (including them could be a possible
future work).

The rest of this section includes description of inputs from Thalamus 7.5.1,
mechanisms of spontaneous activity 7.5.2, and measured features of model output
7.5.3. The free parameters are described overall in the end of the chapter 7.8.

7.5.1 Inputs from thalamus

The main source of inputs to the real A1 from the lower stages of the auditory
pathway are inputs from the auditory thalamus (MGV and MGD) and their major
recipient is the layer L4 (Watson, 2012; Wu et al., 2011; Cruikshank et al., 2002;
Kimura et al., 2003; Romanski and LeDoux, 1993; Winer and Lee, 2007; Barbour
and Callaway, 2008). These inputs are topographically organized to form a gra-
dient of frequency representation (Watson, 2012; Schreiner et al., 2000; Winer,
2005), reflecting the tonotopic organization within the auditory thalamus.

Our model reflects all these facts. The layer L4 is organized into tonotopi-
cally organized bands stimulated by external inputs (representing inputs from
thalamus). The proposed model does not include other types of inputs, such as
specific inputs to intensity tuned auditory neurons (observed e.g., in Greenwo-
od and Maruyama, 1965), neurons selective for direction of frequency modulated
(FM) sound sweeps (Suga, 1965; Mendelson and Cynader, 1985; Zhang et al.,
2003). (These features, such as sound intensity, FM, or amplitude modulation
(AM) are mainly decoded already in the lower stages of the auditory pathways.)
We did not include these inputs (other than “tonotopic inputs”) for two reasons.
First, the model should be first observed during less complicated tasks. After
tuning these basic properties, more complicated properties (such as other types
of inputs) can be integrated. Second, the main experiments, which we wanted
to run, did not include FM or AM and based rather on pure tones and their
combinations.

In the following text, the coding of inputs used in our model is described. Al-
though it is based on knowledge about real inputs (and all these mechanisms were

97

consulted with neuroscientists), the whole coding represents many simplification
compared to reality.

The main physical features of sound are frequency and amplitude. Frequency
corresponds to the bands (their total number is N BANDS, a general parameter of
the model). Pure tone means stimulating neurons in one band. The correspon-
dence between frequency of the pure tone and the band number is linear and in
the rest of the text we use just the numbers of the bands.

The amplitude of the input tone is coded as the probability of the input
stimulus. The maximal amplitude (e.g., 100 dB) corresponds to probability 1, i.e.,
the certain input stimulus. On the other hand the minimal amplitude (e.g., 0 dB)
corresponds to probability 0. The inner values are interpolated linearly. Therefore
for instance a pure tone with amplitude 70 dB and frequency corresponding to
band with number 25 means that in each tick (when this input is present) each
neuron from the band 25 is stimulated with probability 0.7 by the input of a
given value (the general parameter INPUT VALUE).

In the rest of the thesis, we will use only values of bands and probabilities of
the inputs, not their original units Hz and dB.

The Figure 7.4 captures several types of possible inputs: silence, noise, pure
tone, more pure tones (a chord), and composed tone with “normal” distribution
of intensities.

Figure 7.4: A diagram of the representation of tonotopic inputs from the
auditory thalamus. The axis x corresponds to the bands (i.e., frequencies). The
axis y corresponds to the sound intensity. Left: a representation of a pure tone
(only one band is stimulated). Right: representation of alterning blue and gree
“normal” tones (each of them stimulates 5 bands, but the central one with the
highest intensity, and the border ones with lower intensity).

7.5.2 Spontaneous activity

We conscientiously researched possible mechanisms leading to spontaneous activi-
ty, used models of networks with spiking neurons. The results of this effort have
been already described in the Chapter 3. The chosen mechanism, introducing
of mPSCs (miniature Postsynaptic Currents) was used also in (Izhikevich and
Edelman, 2008; Phoka et al., 2012; Muresan and Savin, 2007; Timofeev et al.,
2000). The detailed implementation has been already described in the Section
3.5.5. We use the variant with one fixed pair of parameters F (M FREQUENCY and
A M AMPLITUDE, common for the whole network, because we did not have any
more detail and specific data. The parameter F means the frequency of mPSC

98

on each synapse, with the unit of Hz. The parameter A means the amplitude of
one mPSC with the unit of pA.

We search for the values of F and A observed in real auditory cortex. The
values of F were observed around 3.3 Hz and values of A around 12.7 pA (Kotak
et al., 2005). Since our model scales the number of synapses per neuron by scaling
factor of 20 (20 times less), we consider as reasonable to use a frequency multiplied
by this scaling factor.

We assume that spontaneous activity is the ground of all experiments and
therefore we decided to try more values of the parameters F and A to observe its
influence on the network behaviour and to choose the reasonable combination for
the rest experiments. We refer to this process as the first group of experiments
called “Searching Parameters” and it is described in all details in the Chapter 8
with model results.

7.5.3 Model outputs

During experiment analysis we use the following measurements:

1. mean activity of the whole network and mean activity of the neuron types
and development of this activity over the experiment

2. spike-time raster plot from some parts of the experiment (specified in the
experiment); neuron types are clearly separated

3. global and local waves

4. average of excitatory weights and its development over the experiment (inhi-
bitory weights do not develop)

5. features related to tonotopy and their development:

(a) receptive fields of single neurons

(b) best and characteristic frequencies of single neurons and their visua-
lization in space (overall and distinguished according to the neuron
types)

(c) degree of local heterogeneity (overall and distinguished according to
the neuron types or bands)

Implementation of the non-auditory measurements has been already described
in the Section 3.6. Description of the auditory measurements follows in the next
subsection.

7.5.3.1 Auditory-related measurements

We measured several features related to the organisation of tonotopy. All these
features are based on the receptive fields (RF) of single neurons. The measured
RF is a matrix of 13 bands × 5 intensities and contains number of spikes fired
in reaction to this input. The higher number of spikes, the warmer colour in the
illustration of the RF is used, see Figure 7.5.

99

Figure 7.5: An example of receptive field (RF) of a clearly tuned neuron from
layer L4. The axis x corresponds to the bands and the axis (13 equidistant
bands were tested) y corresponds to the intensities. The colour corresponds to
the number of spikes fired in reaction to the input of the particular frequency
and intensity (the colour scale is on the right).

There are more possibilities, how to determine a “popular input” of a neuron,
or “popular band”, or “popular intensity”. In the case that a neuron is tuned
to one particular frequency and fires only in reaction to this frequency, then the
definition of its popular input is simple. In the case of such tuning of one particular
frequency, the frequency tuning curve is called “I”, because of the shape of the
RF resembling this letter (see Figure 7.5). However, not all neurons are tuned to
a particular type of input. Therefore other definitions of “popular input” must
be specified for them – or they must be specified as neurons without any popular
input.

We use in this thesis two definitions of the “popular input”. For simplicity,
we concern only popularity of frequency, which is a common approach (besides,
the intensity component did not seem so important from the results).

Best Frequency (BF). BF of a neuron is in here defined as the frequency
with the highest number anywhere in the RF matrix, if this number is higher
than a given threshold TBF . Thanks to this threshold, generally quiet neurons
can be eliminated from the subsequent measurements. However, neurons which
are clearly not tuned to any frequency are not eliminated and may derange the
subsequent measurements.

Characteristic Frequency (CF). CF of a neuron is in this thesis2 defined as
follows. First, for each frequency (band), a sum of spike numbers in RF over all
intensities is computed. This gives us a vector of positive integers. We will call this
vector SRF (sum of RF). The CF is defined as the frequency with the maximum
value in the vector SRF. However, in some cases, the neuron is classified as not

2Other definitions may be possible.

100

tuned, i.e. that it does not prefer one frequency more than other frequencies.
There are more heuristics how to detect the case of tuned neuron. For example

the maximum value must be somehow higher than all other values, e.g., higher
than k · m , where k is a parameter and m is an average value. However, this
metric has problems with V shape of tuning curve, where RF has higher numbers
in the area resembling the letter “V” and thus SRF has a shape of a hill. Such
neuron is clearly tuned to the peak of the hill. Therefore it would be beneficial to
recognize, whether SRF has a dominant hill. It can be recognized by the following
approach. Let M be the maximal value in the SRF and T be a parameter. All
positions of the SRF vector with values over M−T are marked. If these positions
form a connected space, we define the neuron as tuned to the peak (or mean
position of all positions with the maximal SRF value), see Figure 7.6. On the
contrary, if the positions form two or more separated sequences, we eliminate this
neuron from the subsequent measurements, see Figure 7.7.

Figure 7.6: A RF of two neurons, which were defined as tuned. Both sides
(left and right) of the picture have the same parts: RF (top), SRF represented
by a colour (in the middle), and SRF represented by a bar graph. Left: two
bands exceed the threshold M − T , but they are neighbouring, therefore they
form a connected space. Right: only one band exceed the threshold T −M and
therefore it trivially forms a connected space, to be defined as a tuned neuron.

Tonotopic maps. When each neuron has a single popular frequency (or is
eliminated from the measurements), it is possible to draw each neuron in the

101

Figure 7.7: A RF of two neurons, which were not defined as tuned. Left: more
bands exceed the threshold level, but they do not form a connected space. This
RF is also an example, where the band with maximal value in the SRF matrix
(band 17) is different from the band with maximal value in the RF matrix (band
49). According to the used BF definition, the BF value would be 49. Right: the
maximal value in the RF is too low and therefore the neuron was not defined
as tuned.

whole network (or its part) by a different colour dependent on the value of the
popular frequency, independently whether it is BF, CF, or any other definition of
the popular frequency. We analysed these tonotopic map from both BF and CF.
An example of such map is given in Figure 7.8.

Degree of local heterogeneity. To compare the degree of local heterogeneity,
we defined a simple measure as a root mean square of distances of band of the
neuron from its popular band (i.e., popular frequency):

TM1 =

√∑n
i=1(Bi − Pi)

n

where n is number of the neurons in this group (e.g., neuron type) included
in the measurement, and each of these neurons has Pi the popular frequency (CF
or BF) and Bi the number of the band of the column, in which the neuron lies.

102

Figure 7.8: Two examples of tonotopic maps. All neurons one neuron type
was drawn in their locations (depth from the surface) and coloured by the colour
corresponding to the “popular band” (here CF). The legend at the bottom shows
colours of the bands. Left: neurons of type p2/3 are depicted. The degree of local
heterogeneity is apparently high. Right: neurons of type ss4 are depicted. Since
this layer is the input layer, it is not so surprising that the degree of tonotopy
is apparently high.

7.6 Model validation

Model validation can have several meanings. First (as it is meant in Nordlie
et al., 2009), it can mean to provide information and partial results that will allow
others to test and validate re-implementations of the model. There, results can
be, for example, membrane potential traces of different neuron types used in the
model – if the models are not well known. Second, it can mean a comparison the
real network and explanation that the model behaves right (but also unexpected
behaviour may be right, see (Schutter, 2010, pp. x)).

According to the first meaning, the used models of neurons and synapses are
well known and their behaviour may be found e.g., in (Izhikevich, 2003, 2006).The
second meaning is (in the basic form) provided in the next Chapter 8.

7.7 Model implementation

We used the SUSNOIMAC simulator tool for the simulation and additional
Matlab scripts for the results analyses. All implementation details have been
described in the Chapter 3.

7.8 Model parameters

In this section we list all used parameters, their description and used values. The
parameters of the model are divided into 5 groups: the general model parameters,
parameters of neuronal types, layers, and connectivity. In addition to the, each
experiment has own setting of input parameters and simulation parameters, which
have been described in the section 3.5.6.

103

7.8.1 General model parameters

The general model parameters are listed in the Table 7.3.

Name Unit Description Used
values

WIDTH µm Width of the network. 2000
LENGTH µm Length of the network. 3000
N NEURONS - Total number of neurons in the

network.
1000,
10000,
50000,
100000

RADIUS µm Radius of a typical neuron (it is
used to prevent overlapping).

10

VELOCITY µm/ms Speed of signal transmission
along synaptic connection.

100

N BANDS - Number of input bands in the in-
put layers.

50

MAX DELAY ms Maximal synaptic conductance
delay.

20

MAX WEIGHT - Maximal weight of excitatory sy-
napses.

100

DELAY PERTURBATION ms Each initial synaptic delay
is perturbed by a random
number from interval 〈0,
DELAY PERTURBATION).

5

PARAM W EXC - Initial weight of an excitatory sy-
napse is random number from in-
terval 〈0,PARAM W EXC).

100

PARAM W INH - Initial weight of an inhibitory sy-
napse is random number from in-
terval (PARAM W INH,0〉.

-50

Table 7.3: The general parameters of the model.

The general model parameters are set in the file modelX.properties, where
X means the number of the experiment (starting with value 1). The exact names
used in this file are slightly different than those in the Table 7.3, but their names
can be easily found in the example files. We chose use in the text of the thesis
different names to have a standardized form of their format and we did not change
the format used in properties file, because it would be necessary to change all files
of already finished experiments.

7.8.2 Layer parameters

The used layers and their parameters are listed in the Table 7.4. These values are
set in the table3.csv file in the CSV format with semicolon as delimiter.

104

Layer Thickness Input

L1 69 False
L2/3 235 False
L4 208 True
L5 248 False
L6 451 False

Table 7.4: Parameters of the model related to layers.

7.8.3 Neuron types parameters

The used neuron types and their parameters are listed in the Table 7.5. The used
axonal radii of neuron types in all layers (table called X0 in the text) are listed in
the Table 7.6. All these values are set in the table1.csv file in the CSV format
with semicolon as delimiter.

Label T L Cells C k vr vt vp a b c d exc.

nb1 nb L1 1.512 20 0.3 -66 -40 30 0.17 5 -45 100 false

p2/3 p L2/3 26.21 100 3 -60 -50 50 0.01 5 -60 400 true

b2/3 b L2/3 3.125 20 1 -55 -40 25 0.15 8 -55 200 false

nb2/3 nb L2/3 4.234 100 1 -56 -42 40 0.03 8 -50 20 false

ss4(L4) ss L4 9.274 100 3 -60 -50 50 0.01 5 -60 400 true

ss4(L2/3) ss L4 9.274 100 3 -60 -50 50 0.01 5 -60 400 true

p4 p L4 9.274 100 3 -60 -50 50 0.01 5 -60 400 true

b4 b L4 5.444 20 1 -55 -40 25 0.15 8 -55 200 false

nb4 nb L4 1.512 100 1 -56 -42 40 0.03 8 -50 20 false

p5(L2/3) p L5 4.839 100 3 -60 -50 50 0.01 5 -60 400 true

p5(L5/6) p L5 1.31 100 3 -60 -50 50 0.01 5 -60 400 true

b5 b L5 0.605 20 1 -55 -40 25 0.15 8 -55 200 false

nb5 nb L5 0.806 100 1 -56 -42 40 0.03 8 -50 20 false

p6(L4) p L6 13.71 100 3 -60 -50 50 0.01 5 -60 400 true

p6(L5/6) p L6 4.839 100 3 -60 -50 50 0.01 5 -60 400 true

b6 b L6 2.016 20 1 -55 -40 25 0.15 8 -55 200 false

nb6 nb L6 2.016 100 1 -56 -42 40 0.03 8 -50 20 false

Table 7.5: Parameters of the model related to neuron types.

7.8.4 Connectivity parameters

The used parameters for the connectivity are listed in the Table 7.9 (in text this
table is called as X1 and X2). All these values are set in the table2.csv file in
the CSV format with semicolon as delimiter.

7.8.5 Input parameters

The input parameters are listed in the Table 7.7. The exact used values are listed
in the descriptions of experiments, in the Chapter 8. These parameters are set
in the file inputsX.properties, where X means the number of the experiment
(starting with value 1).

105

Label L1 L2/3 L4 L5 L6

nb1 200 200 200 200 200

p2/3 550 1120 150 1000 150

b2/3 0 150 150 150 0

nb2/3 200 200 200 200 200

ss4(L4) 0 300 1120 400 150

ss4(L2/3) 150 400 500 150 150

p4 150 1120 150 550 150

b4 0 0 500 0 0

nb4 200 200 200 200 200

p5(L2/3) 150 400 300 500 250

p5(L5/6) 0 0 150 500 1000

b5 0 0 0 500 0

nb5 200 200 200 200 200

p6(L4) 0 0 150 500 1000

p6(L5/6) 0 150 1000 150 150

b6 0 0 0 0 500

nb6 200 200 200 200 200

Table 7.6: Parameters of the model related to axonal areas (axonal radii in
layers).

Name Unit Description Used
values

INPUT TYPE - Type of the inputs (0 ∼ nothing, 1 ∼ mi-
nis, 2 ∼ noise, 3 ∼ few pure tones, 4 ∼mo-
re pure tones, 5 ∼ more normal sounds,
6 ∼ tonotopy experiment)

0, 1, 2,
3, 4, 5, 6

INPUT VALUE pA Value of the input current. 1500
INPUT DURATION ms Duration of one input. 500
BANDS - List of used bands separated by semico-

lons.
different
values

INTENSITIES - List of used intensities expressed as pro-
babilities in the range 〈0, 1〉 separated by
semicolons.

different
values

Table 7.7: Input parameters of an experiment.

106

Figure 7.9: Parameters of the model defining the connectome.

107

7.9 Tabular description

Finally, we provide an overall summarized description of the network in tables,
as it is recommended in guidelines by Nordlie (Nordlie et al., 2009).

A Model Summary

Populations Seventeen: nb1, p2/3, b2/3, nb2/3, ss4(L4), ss4(L2/3), p4, b4,
nb4, p5(L2/3), p5(L5/6), b5, nb5, p6(L4), p6(L5/6), b6, nb6

Topology 3D coordinates within a network
Connectivity Generated according probabilities of connections between

all pairs of neuron types
Neuron model Generalized Izhikevich neuron model (Izhikevich, 2007)
Channels models -
Synapse model Fixed synaptic conduction delays and changeable synaptic

weights
Plasticity STDP
Input Tonotopic inputs from thalamus
Measurements Spike trains (and from them spike-time raster plot and glo-

bal and local waves); development of: mean activity (wi-
thin a network and individual neuron types), weights and
their distribution, tonotopic features (receptive fields, best
frequencies and measure of tonotopy)

Table 7.8: The summarized tabular description of the designed model.

108

8. Model of the Auditory Cortex:
Results

This chapter describes experiments run on the model, their results and discussion.
The experiments were divided into three groups:

1. Parameter Space Search. The goal of these experiments was to try more
values of certain parameters of the model, to observe and describe their
influence on the network behaviour, and choose a reasonable combination
of parameters for the other experiments.

2. Features of the Chosen Parameters. The goal of these experiments was
to observe the chosen combination of parameters in more detail: in longer
simulation and using different sizes of the network.

3. Tonotopy Experiments. The goal of these experiments was to observe the
model development during different types of inputs and research the resul-
ting influence on tonotopic organization of the network. These experiments
were designed to test the hypothesis described in the Section 6.1.1.

The first two groups of experiments concern just the spontaneous activity (no
external input), whereas the third group concerns also different types of sound
stimuli (such as noise, or pure tones).

8.1 Parameter Space Search

This first group of experiments was designed to search at least a part of the
parameter space. We had two main reasons for this: first, to observe and describe
influence of different settings of these parameters on the network behaviour, and
second to choose a reasonable combination for the subsequent experiments.

8.1.1 Description of the experiments

Since the space of all parameters is very large, it is not possible to test all
the possible values of all parameters and it would be even more impossible to
analyse the results. Therefore we had to choose just a limited parameter spa-
ce and other parameters set fixed. We considered two types of parameters to
be important to have tested: parameters of spontaneous activity, i.e., mPSC,
and parameters of the long-term plasticity, i.e., STDP, because both these me-
chanisms have fundamental influence on the network activity. Other parameters
were set fixed. The values of WEIGHT INCREASE, WEIGHT DER MULT, PARAM LTP,
and STDP DER MULT were adopted from (Izhikevich, 2006) and the parameters
PARAM W EXC and PARAM W INH were adjusted to the generalized form of the Izhi-
kevich neuron model. The researched parameters are listed in the Table 8.1.

PARAM LTD has only two tested values, because we wanted to research the
influence of the ratio between PARAM LTP and PARAM LTD, which was in (Izhikevich,
2006) used as 1.0:1.2 and in (Izhikevich2008) used as 1:2.

109

no. N T F A LTD INPUTS LOG S LOG D

1 10,000 2,000 s 15 13 1.2 minis 1,995 s 5 s
2 10,000 2,000 s 15 13 2.0 minis 1,995 s 5 s
3 10,000 2,000 s 15 20 1.2 minis 1,995 s 5 s
4 10,000 2,000 s 15 20 2.0 minis 1,995 s 5 s
5 10,000 2,000 s 15 27 1.2 minis 1,995 s 5 s
6 10,000 2,000 s 15 27 2.0 minis 1,995 s 5 s
7 10,000 2,000 s 30 13 1.2 minis 1,995 s 5 s
8 10,000 2,000 s 30 13 2.0 minis 1,995 s 5 s
9 10,000 2,000 s 30 20 1.2 minis 1,995 s 5 s

10 10,000 2,000 s 30 20 2.0 minis 1,995 s 5 s
11 10,000 2,000 s 30 27 1.2 minis 1,995 s 5 s
12 10,000 2,000 s 30 27 2.0 minis 1,995 s 5 s
13 10,000 2,000 s 45 13 1.2 minis 1,995 s 5 s
14 10,000 2,000 s 45 13 2.0 minis 1,995 s 5 s
15 10,000 2,000 s 45 20 1.2 minis 1,995 s 5 s
16 10,000 2,000 s 45 20 2.0 minis 1,995 s 5 s
17 10,000 2,000 s 45 27 1.2 minis 1,995 s 5 s
18 10,000 2,000 s 45 27 2.0 minis 1,995 s 5 s
19 10,000 2,000 s 60 13 1.2 minis 1,995 s 5 s
20 10,000 2,000 s 60 13 2.0 minis 1,995 s 5 s
21 10,000 2,000 s 60 20 1.2 minis 1,995 s 5 s
22 10,000 2,000 s 60 20 2.0 minis 1,995 s 5 s
23 10,000 2,000 s 60 27 1.2 minis 1,995 s 5 s
24 10,000 2,000 s 60 27 2.0 minis 1,995 s 5 s

Table 8.1: The settings of 14 experiments from the first group of experiments:
Parameter Space Search. The meaning of the columns is following: N is
number of neurons, T is duration of the experiment (in s of model time), F
and A are values of the parameters M FREQUENCY and M AMPLITUDE of mPSCs,
LTD is value of the parameter PARAM LTD, INPUTS is type of inputs (here only
spontaneous activity), LOG S and LOG D are values of parameters LOG START

and LOG DURATION, which here means that we saved logs and analysed exactly
the last 5 s of each experiment.

Before choosing the tested values for F (parameter M FREQUENCY) and A (pa-
rameter M AMPLITUDE), we did a preliminary research. Their values in the real
AC fluctuate around F=3.3 ± 0.2 Hz and A=12.7 ±1.4 pA (based on values
about mEPSC from the AC (Kotak et al., 2005)). Initially, we tested the same
values in the model. However, these values were not sufficient for any activity. It
is relatively logical, because in our model each neuron has 20 times less incoming
synapses than in the real AC. Therefore we considered reasonable to multiply the
real value of parameter F by the scaling factor (5–20).

To sum it up, we tested 4× 3× 2 = 24 variants, each of them on the network
of 10,000 neurons, with no external stimulation, only the spontaneous activity
(minis). The relevant settings of all experiments of Parameter Space Search
group are listed in the Table 8.1. Parameters of the model, which are not listed in
the table, are same as in all other experiments and can be found in the Chapter

110

7. We run each experiment for 2,000 s of model time and analysed spike trains
from the last 5 s of the simulation.

All the experiments described in this chapter were run once (because of their
number and duration). However, many preliminary experiments preceded the
final experiments (with very similar results), and the total number of performed
experiments is relatively high (50), so the repetitive running should not change
the results significantly. Regardless, it could be meaningful future work.

8.1.2 Results of the experiments

Experiments with values 15 Hz of the parameter F did not lead to any activity
(in the case of A=13 pA), or almost any activity (A=20 pA), or very low activity
(A=27 pA). Therefore, they are included neither in the following description of
results, nor in the analysis of the results.

Because the parameter space has three dimensions and we analyse many fe-
atures, the following text is divided into two main subsections. First, the overall
description will be provided and the main results will be listed in a tabular for-
mat. Second, the results of the individual features will be described, grouped the
parameters.

8.1.2.1 Overall description of the results

The synoptic results are listed in the Table 8.1. Values of the mean firing ra-
te (mean activity) range from 0.5 to 10 Hz. The most active neuron types are
b2/3 (up to 80 Hz) and b5 (up to 70 Hz) and the second most active neuron
types are p2/3 and p5. On the contrary, the neuron types nb1 and nb6 fire only
exceptionally.

Global waves are present only in some experiments and then only with low
frequencies (up to 11 Hz). Local waves are markedly dependent on parameter
values and location in the network. Generally frequencies of all types are present,
however the highest amplitude have again only the waves with low frequencies.

The development of the mean of the excitatory weights is dependent of the
values of F and A. The very low values (F up to 30 Hz) led to sudden drops.
However, in the majority of the experiments (with higher values of F or A), the
weights became stable (after 20–2,000 s) and in some cases slightly fluctuated,
in other cases remained stable without fluctuations. The resulting values of the
mean of the excitatory weights ranged from 20 to 60.

The duration of the experiment ranged between 150 to 190 min of the real
time.

111

Figure 8.1: The results of the first group of experiments: Parameter Spa-
ce Search. Rows correspond to the experiments (experiments with F=15 Hz
were not included for too low activity). The first four columns describes main
setting of the experiments. The other columns summarize the main measured
features. FR: mean firing rate of all neurons. GLOBAL: global oscillations (ra-
rely, medium often, and often). LOCAL: local oscillations. WEIGHTS: main
characteristic of the development of the mean excitatory weights. FLUCT: pre-
sence of fluctuations in the mean excitatory weights. MW: mean value of the
excitatory weight in the end of the experiment. T: duration of execution of the
experiment in s (real time).

8.1.2.2 Description of the results grouped by features and parameters

The network activity. As can be seen from Figures 8.2, 8.3, 8.4, and 8.5, each
of the tested LTD values led to markedly different behaviour.

• The lower (LTD=1.2) value led to much clearer synchronization (see Figure
8.2 versus Figure 8.3). On the other hand, the higher (LTD=2) value led
to much narrower amplitude of fluctuations in activity: in all neuron types,
but most significantly in basket neurons in layers L2/3 and L5.

• In addition to that, the mean activity of these basket neurons was higher
with the lower LTD value.

• Moreover, as can be seen from Figure 8.2, the lower LTD value led to
noticeable activity even in the less active neuron types (e.g., ss4, p4, nb4),
whereas in the case of the higher LTD value, these neuron types fired more
rarely and in solitude.

• The last significant distinction between LTD values is the course of the
activity of b2/3 and b5. While in the case of lower LTD (see 8.4), it has

112

first a rather downward trend before it gets relatively stable (but with high
amplitude of fluctuations), in the case of higher LTD (see 8.3), the trend
is upward before it gets stable (here the amplitude of fluctuations is much
lower).

Figure 8.2: STRP of experiments with LTD=1.2. The first row corresponds
to F=30 Hz, the second row to F=45 Hz, the third row to F=60 Hz. The first
column corresponds to A=13 pA, the second column to A=20 pA, the third
column to A=27 pA.

The influence of F and A is very similar and can be relatively clearly described.

• The overall (and also mean) activity of the network is approximately di-
rectly proportional to the value of F and A.

• The higher values of F and A lead to smaller fluctuations of all neuron
types, see Figures 8.4, and 8.5.

• With growing F and A, the values of b5 activity are closer to the values of
b2/3 activity, see Figures 8.4, and 8.5.

113

Figure 8.3: STRP of experiments with LTD=2.0. The first row corresponds
to F=30 Hz, the second row to F=45 Hz, the third row to F=60 Hz. The first
column corresponds to A=13 pA, the second column to A=20 pA, the third
column to A=27 pA.

114

Figure 8.4: Firing rate of experiments with LTD=1.2. The first row corre-
sponds to F=30 Hz, the second row to F=45 Hz, the third row to F=60 Hz.
The first column corresponds to A=13 pA, the second column to A=20 pA, the
third column to A=27 pA.

115

Figure 8.5: Firing rate of experiments with LTD=2.0. The first row corre-
sponds to F=30 Hz, the second row to F=45 Hz, the third row to F=60 Hz.
The first column corresponds to A=13 pA, the second column to A=20 pA, the
third column to A=27 pA.

116

Figure 8.6: First group of experiments, examples of local waves (from experi-
ment no. 19). The first row depicts locations of the measured local areas. The
second row depicts number of spikes over time, in this local area. The third row
depicts the present oscillations. Left: an area from layers L1–L3, where only
low-frequency waves were present. Right: an area from layers L4–L6, where a
broader spectrum of waves was present.

The oscillation spectrum. Each of the tested LTD values led to significantly
different behaviour.

• The higher value of LTD led to totally suppressed emergence of global waves.
On the contrary, in the case of the lower LTD, the synchronized activity
can be observed even in spike times raster plot Figure 8.2 and in some
experiments, the global waves were confirmed also by the power spectrum
analysis.

117

• Likewise the local waves occurred in the case of the higher LTD only ex-
ceptionally and with small power, whereas in the case of the lower LTD,
local waves occurred much more frequently and in richer spectrum. Inte-
restingly, the spectrum was dependent on the position within the network.
For example on Figure 8.6, the location in the range of layers L1–L3 shows
only alpha and theta waves, whereas the location in the similar position,
but in the range of layers L4–L6 during the same time shows also beta and
gamma waves.

The influence of values F and A on oscillations is not so clear. In the case of
lowest value of A (13 pA), the global waves were present in every experiment.
However in the case of highest value of A (27 pA), the global waves were also
sometimes present.

Figure 8.7: Development of the excitatory weights in experiments with
LTD=1.2. The first row corresponds to F=30 Hz, the second row to F=45
Hz, the third row to F=60 Hz. The first column corresponds to A=13 pA, the
second column to A=20 pA, the third column to A=27 pA.

118

The development of the excitatory weights. The development of excita-
tory weights is again significantly influenced by the LTD value.

• Whereas the lower LTD led to early (up to 200 s) stabilization and then
small fluctuations around 23, the higher LTD led to gradual growth with
later (around 1,000 s) stabilization on a value in the range between 30 and
60, (almost) without fluctuations.

There is not any clear trend in influence of F and A on the development of
excitatory weights.

Figure 8.8: Development of the excitatory weights in experiments with
LTD=2.0. The first row corresponds to F=30 Hz, the second row to F=45
Hz, the third row to F=60 Hz. The first column corresponds to A=13 pA, the
second column to A=20 pA, the third column to A=27 pA.

119

8.1.3 Analysis and discussion of the results

First, we suggest some explanations of the described results. Second, we compare
the results to the real observed data.

8.1.3.1 Explanations

The influence of the LTD value is significant and rich (in number of features which
are influenced by this value). However, we can observe much logical coherence in
the results. With the higher value, the network activity and weights are more
stable and they fluctuate less. On the other hand the fluctuations in the case of
lower LTD are correlated with the synchronous activity with the same frequency
as the frequency of the fluctuations. It is a question, what is the exact mecha-
nism of the origin of these fluctuations. It could be interesting to research it in
detail, because level of neuronal synchrony seems to be an important factor of the
memory and higher level processes, but also several diseases, such as Parkinson’s
disease (Nini et al., 1995).

The influence of F and A values is much simpler. It is logical that the instead
of exact values of F and A, their product is the important factor (see Figures 8.2
and 8.3). As expected, the higher values of F·A lead to a higher network activity.

8.1.3.2 Comparison to the real data

We briefly comment the results in comparison with the real data. We divided
this comparison according to the classes of features: the network activity, the
oscillations (waves), and the weights.

The network activity. Comparing the absolute values of the firing rate to the
real data is problematic for several reasons. Mainly, the results from reality are
highly diverse and contradictory. The absolute value of the firing rate depends
on the method of the experiment, for instance the anaesthesia reduces activity
level (Young and Brownell, 1976; Evans and Nelson, 1973; Kuwada et al., 1987;
Gaese, 2001; Wang et al., 2005) and different anaesthetics reduce the activity
in different level. Other important factors are the area of recorded neurons, the
particular neurons types, their number and distribution (e.g., higher percentage
of FS neurons will lead to higher activity), the age of the individual (Oswald and
Reyes, 2008) and many others.

However, the values of the mean firing rate between 0.5–20 Hz are generally
corresponding to the reality (e.g., Sakata and Harris, 2012).

Instead of comparing the absolute values, it is reasonable to compare the
qualitative features or proportion between firing rates of different neuron types.
Surprisingly, there are not many studies describing the firing rate of different
neuron types in different layers in the AC. In the study (Sakata and Harris,
2012), the putative fast spiking interneurons were significantly more active than
the putative pyramidal neurons (recorded from layers L2/3 and L5). That is in
correspondence with results observed in our model, where b2/3 and b5 (the only
FS interneurons) are the clearly most active neuron types. On the other hand, the
putative FS interneurons from layer L5 were in the study more active than those
in layer L2/3, whereas in the model, it is almost always contrariwise. However,

120

it could be caused by the fact, that many parameters of the model (e.g., the
distribution of the synaptic connections between particular neuron types) are
not based on data from the AC, but also from other cortical areas (and other
animals), see (Izhikevich and Edelman, 2008).

The network oscillations. The observed network oscillations are similar to
those observed in the model by (Izhikevich and Edelman, 2008). The low frequen-
cies (mainly delta and alpha) arose in the entire network, whereas the higher
frequencies (especially gamma) cancelled each other when averaged over a bigger
area, therefore being present only in local areas (see local waves in the Table
8.1). This is consistent with the experimental observation that gamma rhythms
are weaker in EEG recordings than in LFPs and intracranial EEGs (Nunez and
Srinivasan, 2006).

However, the comparison of the results of oscillations in our model and os-
cillations obtained from methods such as LFP, EEG, or ECoG, can be only ap-
proximate. Although these recording methods somehow register the activity of
neurons from a certain area (sometimes called as population activity), they de-
pend on many sources, and therefore do not exactly correspond just to the mean
membrane potential, or even number of spikes. These sources include synaptic
activity, intrinsic currents and resonances, gap junctions and neuron-glia inter-
actions, or ephaptic effects (Buzsáki et al., 2012).

The development of the excitatory weights. It is generally positive that
all tested parameters led to stable weights. Small fluctuations, occasional and
gradual changes are generally consistent with results obtained from the AC of
young (up to 1 month) mice (Oswald and Reyes, 2008).

8.1.4 Outcome

For the next experiments we chose the combination of parameters from the expe-
riment number 19, i.e. LTD=1.2, F=60 Hz, A=13 pA, for the following reasons:

1. The values F=60 Hz and A=13 pA best correspond to the values observed
in the real AC (after the relevant scaling, see the Section 3.5.5).

2. Development of the firing rate of all neuron types is relatively stable and
the values are relatively reasonable. The higher values of F and A led to
rather too high activity of the basket interneurons, whereas lower values of
F and A led to a rather less stable activity of the basket interneurons.

3. In this combination of parameters, the theta and alpha global waves occurred
and a rich range of local waves occurred. For this feature, the lower value
of LTD was necessary.

4. The development of excitatory weights levelled off and remained relatively
stable only with small fluctuations around the value of 24.

121

8.2 Features of the Chosen Parameters

The second group of experiments was designed to observe and describe the fea-
tures of the parameters chosen in the previous section more in detail: in longer
time scale and different size scale of the network.

8.2.1 Description of the experiments

We decided to test three sizes of the network: first: 10,000, second: 50,000, and
third: 100,000 neurons. The approximate number of neurons in the modelled area
in the real AC may be estimated between 500,000–1,000,000 of neurons, based
on densities in the cerebral cortex (but not directly AC) published in (DeFelipe
et al., 2002). The duration of the simulation was designed for 5 h, 2 h, and 30
min, respectively. In addition to analyse the spike trains only from the end of
the simulation, we recorded and analysed the spike trains from several (10, 4, 10,
respectively) equidistant segments of the simulation. All these values are listed
in the Table 8.2. Parameters of the model, which are not listed in the table, are
same as in all other experiments and can be found in the Section 7.8.

no. N T F A LTD INPUTS LOG S LOG D

1 10,000 5 h 60 13 1.2 minis 30 min 3 s
2 50,000 2 h 60 13 1.2 minis 30 min 3 s
3 100,000 30 min 60 13 1.2 minis 3 min 3 s

Table 8.2: The settings of 3 experiments from the second group of experi-
ments: Features of the Chosen Parameters. The meaning of the columns is
following: N is number of neurons, T is duration of the experiment (in s of mo-
del time), F and A are values of the parameters M FREQUENCY and M AMPLITUDE

of mPSCs, LTD is value of the parameter PARAM LTD, INPUTS is type of inputs
(here only spontaneous activity), LOG S and LOG D are values of parameters
LOG START and LOG DURATION, which here means that we analysed each 30 min
(3 min in the case of the largest network) a time frame with duration of 3 s.

8.2.2 Results of the experiments

The description of the results is divided into three parts: the network activity, the
oscillation spectrum, and the development of the excitatory weights. Each part
describes how the related features developed over time and in comparison among
the network sizes.

The network activity. The overall activity over the simulation is generally
similar in all three network sizes; see Figure 8.9. Minor differences are observable
in the shape of curves of the mean firing rate of particular neuron types. For
instance, the amplitude of the fluctuations of b2/3 declines with the growing
network size. In all sizes, the activity is relatively stable. However, in the case
of the largest network, the longer simulation duration would be necessary, to
confirm this observation (e.g., the mean firing rate of b5 did not stabilize until
half of the simulation). The range of the mean firing rate values is also generally

122

very similar in all three network sizes. The most active neuron type is b2/3 with
the mean firing rate between 30–40. The second most active neuron type is b5
with the mean firing rate around 10 in the case of 10,000 and 50,000 neurons,
and around 15 in the case of 100,000 neurons. The values of other neuron types
are in all cases lower than b2/3 and b5. For details, see Figure 8.9.

Figure 8.9: A comparison of the mean network activity between three network
sizes: 10,000 neurons (first row), 50,000 neurons (second row), and 100,000
neurons (third row).

123

Figure 8.10: The development of the network activity over time: network
with 10,000 neurons. Left column depicts STRP, right column depicts global
waves. Note the alternation of synchronized activity (first and third row) and
desynchronized activity (second and fourth row).

124

Figure 8.11: The development of the network activity over time: network
with 50,000 neurons. Left column depicts STRP, right column depicts global
waves. Note the alternation of synchronized activity (first and third row) and
desynchronized activity (second and fourth row).

125

Figure 8.12: The development of the network activity over time: network
with 100,000 neurons. Left column depicts STRP, right column depicts global
waves. Note the alternation of synchronized activity (first and third row) and
desynchronized activity (second and fourth row).

126

The network oscillations. The recordings of spike trains from more time
frames over the simulation showed remarkable result in the network synchrony.
As can be seen from the Figures 8.10, 8.11, and 8.12 two types of synchrony were
present: a low synchrony with no global waves, and rather high synchrony with
noticeable global waves (with frequencies 5 and 10, in the case of both smaller
networks, and 4 or 9 in the case of the largest network).

To describe the exact structure of these two states (synchronized and desyn-
chronized), more experiments would be necessary. It could be really interesting
to observe and describe the development of alternations between these states, as
well as an approximate duration. From the existing results, it seems that syn-
chronized states are more often, or last longer. (This observation is not visible
from the figures in the text, but from figures over the whole experiments.)

The development of the excitatory weights. In all the three cases, the
weights were rather stable over the entire simulation, with values fluctuating
between 20 and 40. The fluctuations were smallest in the smallest network and
largest in the largest network; see Figure 8.13.

Figure 8.13: A comparison of the development of the mean excitatory weights
between the network sizes: 10,000 (first row), 50,000 (second row), and 100,000
(third row).

8.2.3 Analysis and discussion of the results

The results display two positive qualities of the model: the observed characte-
ristics are generally stable over time and very similar in networks with different
size. In addition to that, a striking feature of two different states of synchro-
ny can be observed (in all network sizes). Similar alternations of synchronized
and desynchronized states were observed in the AC in vivo in both anesthetized
(Sakata and Harris, 2012; Clement et al., 2008; Sakata and Harris, 2009), and
unanesthetized (Sakata and Harris, 2012) animals.

127

8.3 Tonotopy Experiments

The last group of experiments researched the designed model under stimulation
from the thalamus in addition to the spontaneous activity (i.e., the mPSCs were
present in all experiments). The experiments were designed to test the network
behaviour during (and after) stimulation by different types of inputs: noise, few
pure tone, more pure tones and more complex tones (called normally distributed).
In addition to the features measured in the previous two groups of experiments,
in this last group we measured also features related to the tonotopic organizati-
on: receptive fields of single neurons and organization of their best frequencies.
This group of experiments aims to basically test the hypothesis described in the
Section 6.1.1, where the basic idea is that STDP could be a sufficient mechanism
for the following observations: noise leads to very low topotopy, few pure tones to
low tonotopy, and more complex tones to the typically observed tonotopic organi-
zation: tonotopy present in coarse, but not in fine, spatial scales (Bandyopadhyay
et al., 2010).

8.3.1 Description of the experiments

Because the results of the previous group of experiments verified that different
network sizes exhibited the qualitatively (but generally also quantitatively) the
same features, we decided to run the tonotopy experiments only on the two smaller
networks (i.e., first with 10,000 neurons and second with 50,000 neurons). Both
networks were initialized by the final state from the previous experiments (i.e.,
after 5 h and 2 h of spontaneous activity, respectively). We conducted 4 types
of experiments for both networks. These types differed in the inputs: noise, few
pure tones, more pure tones, and “normal tones”. First, we will briefly describe
these inputs.

1. Noise: Each tick, 5 neurons from the input (L4) layer were randomly chosen
and each of them was stimulated by an input with intensity of 50 dB (i.e.,
probability 0.5).

2. Few pure tones: One input lasted for 500 ms. Every 500 ms a new input was
randomly chosen. In total, 6 inputs were used: nothing, or one of the given
bands (see Figure 8.14). Each of these 6 inputs had the same probability to
be chosen. All these inputs had the same intensity value 50 dB.

3. More pure tones: This experiment was the same as the previous one, except
that here more bands were used. Instead of 5 bands as in the case of few
pure tones, here 25 bands were used, see Figure 8.14.

4. Normal tones: In this experiment, one input does not mean stimulating
a single band with a fixed intensity, but more bands, which specifically
distributed intensities: the central band of the input is stimulated by the
highest intensity and the intensity declines to both sides from the central
band, as it is illustrated in Figure 8.14. In this experiment, 25 bands were
chosen and the intensity declined with the following values: 50 db (the
central band), 40 dB, 20 dB, 10 dB.

128

Figure 8.14: A diagram of bands involved in different input types. First row:
the input type “few pure tones” (5 bands). Second row: the tested input bands
in the experiment, which measures RF and other tonotopy-related features (13
bands). Third row: the input type “more pure tones” (25 bands). Fourth row:
the input type “normal tones” (25 bands, but with overlapping areas, see Figure
7.4).

The smaller network was let to develop for 2 h, the bigger network for 30 min.
The synoptic parameter settings are listed in the Table 8.3. Parameters of the
model, which are not listed in the table, are same as in all other experiments and
can be found in the Section 7.8.

no. N T F A LTD INPUTS LOG S LOG D

1 10,000 2 h 60 13 1.2 noise 30 min 5 s
2 10,000 2 h 60 13 1.2 few 30 min 5 s
3 10,000 2 h 60 13 1.2 more 30 min 5 s
4 10,000 2 h 60 13 1.2 normal 30 min 5 s
5 50.000 30 min 60 13 1.2 noise 10 min 5 s
6 50.000 30 min 60 13 1.2 few 10 min 5 s
7 50.000 30 min 60 13 1.2 more 10 min 5 s
8 50.000 30 min 60 13 1.2 normal 10 min 5 s

Table 8.3: The settings of 8 experiments from the third group of experiments:
Tonotopy Experiments. The meaning of the columns is following: N is num-
ber of neurons, T is duration of the experiment (in s of model time), F and A
are values of the parameters M FREQUENCY and M AMPLITUDE of mPSCs, LTD
is value of the parameter PARAM LTD, INPUTS is type of inputs, LOG S and
LOG D are values of parameters LOG START and LOG DURATION, which here
means that we analysed each 30 min (10 min in the case of the larger network)
a time frame with duration of 5 s.

To analyse the tonotopic organization, another experiment on the network
must be performed. A battery of particular inputs is designed and these inputs
are step by step played to the network. We chose a battery of 65 inputs: a matrix
of 13 bands and 5 intensities, illustrated in Figure 8.14. Each input lasted 100 ms
and was followed by 400 ms of silence (but mPSCs were always present). This
battery of inputs was randomly permutated and played to the network in five
repetitions.

129

This experiment, which measures a tonotopic organization (we will call it
mTono) was performed in an alternative reality each 10 min of the basic expe-
riment (which will be called the lTono from learning). According to the chosen
implementation of the alternative reality (see the Section 3.5.3), each 10 min each
lTono experiment was saved and then on all these saved networks the mTono ex-
periment was run.

8.3.2 Results of the experiments

First, the general features are described. Second, the features related to the to-
notopy are described.

8.3.2.1 Description of the results of general features

The network activity. As can be seen from Figure 8.15, activity was in all
experiments relatively stable over time. All inputs led to generally similar mean
firing rates of all neuron populations, except of neuron types in L4, especially b4,
which was most active when stimulated by “normal tones”. All these observations
hold both for smaller (10,000) and larger (50,000) network, but the figures are
from the smaller one. Example of spike time raster plot are illustrated in Figure
8.16, all are from the same (last) part of the simulation.

Figure 8.15: The mean firing rate over time in comparison between input
types. Left-top: few pure tones. Right-top: more pure tones. Left-bottom: noise.
Right-bottom: Normal tones.

130

Figure 8.16: STRP from the last time frame of the simulation in comparison
between input types. Left-top: few pure tones. Right-top: more pure tones. Left-
bottom: noise. Right-bottom: Normal tones.

The network oscillations. Oscillations (both global and local) were generally
the same in all input types, but differed between the network sizes (in the smaller
network, local waves were more frequent and large). Again, the two states were
noticeable: one, with very small (L4–6) or no (L1–3) oscillations, and second
with markedly larger oscillations. These states were present in all experiments.
Examples of local waves from these two states and deep and superficial layer are
illustrated in Figure 8.17.

The development of the excitatory weights. Development of the excita-
tory weights was similar in both network sizes, and only slightly differed between
input types. The most different was in the case of normal tones, where the weight
fluctuations were lower than in other input types, noticeable in both network
sizes.

131

Figure 8.17: The local oscillations. Two top rows: from the synchronized state
of activity (first row from L1–L3, second row from L4–L6). Two bottom rows:
from the desynchronized state of activity (third row again from L1–L3, fourth
row from L4–L6).

132

8.3.2.2 Description of the results of tonotopy-related features

We measured several features related to the organisation of tonotopy: receptive
fields (RF), best frequency (BF), characteristic frequency (CF), tonotopic map,
and measure of tonotopy (TM1). All these features have been described in the
Section 7.5.3.

Receptive fields The receptive fields were very dependent on the neuron type.
However, even within a neuron type, the receptive fields were typically highly
different. To provide an idea of their diversity, see Figure 8.19. The most tuned
neurons were present in the layer L4, which is not surprising, because this layer
gets the direct tonotopic input from the auditory thalamus, in our model. The
neurons, which lie directly in one of the tested bands and in L4, had mostly the “I”
tuning curve. In other layers, such sharply tuned neurons were much less frequent,
but not absent (see Figure 8.20). In contrary to the observations from the real AC,
the “V” types of tuning curve were (almost) not present in the model. However,
according to the data provided by Mgr. Ondřej Novák and Jakub Tomek from
AC of mice, the observed RFs were generally relatively similar, see Figure8.21.

Figure 8.18: A typical example of RF from the experiment with noise as
inputs.

The major difference between different input type experiments was noticeable
in noise input type. The resulting RFs were much more diverse (see Figure 8.18)
than in other input types.

133

Figure 8.19: Examples of receptive fields of different types of neurons. First
row: layer L2/3, second row: layer L4, third row: layer L5, and fourth row:
layer L6. All RFs were selected from the experiment with few pure tones.

134

Figure 8.20: Examples of tuned neurons (i.e., rather clear preference of one
frequency) of different types of neurons. The apparent majority of tuned neu-
rons was in the input layer.

135

Figure 8.21: A comparison of RFs from the model (left) and of RFs from
in vivo experiments from the mouse AC (right). In each row a pair of rather
similar RFs was manually selected – there is not any other known relation,
e.g., location. However, all neurons were from layer L2/3 (both in silico and
in vivo).

136

Tonotopic maps The result obtained using BF and CF for the tonotopic map
were not much different, but using CF led to easier recognition of the tonotopic
organization, therefore in the rest of the results, we will describe the results from
CF metric. It is relatively common, than neurons which are not tuned to any
particular frequency are eliminated from the analysis (the same is used in vivo
experiments, e.g., Rothschild et al., 2010).

The most clear characteristic observable from the tonotopic map is the dif-
ference between layers. While the input layer L4 contains clearly tuned bands,
other layers are not so clearly tuned. The layer nb1 is very silent and with only
minor exceptions were not included in the measurement. The layers L2/3 and L5
are not much tonotopic. On the contrary layer L6 (although it is not an input
layer) was in some experiments noticeably tonotopically organised.

As can be seen in Figure 8.22 (data from the larger network), different tonoto-
pic organization emerged in different input type experiments. The most tonotopic
results can be seen in experiments with pure tones (both few and more). In the
results with normal tones the tonotopy is also visible, but much less evidently.
On the contrary, the experiment with noise resulted in very high degree of local
heterogeneity. Interestingly, the resulting state in the case of noise inputs con-
tained much higher percentage of neurons preferring high frequencies than low
ones. We examined the development of the tonotopic organization in the case of
noise inputs and observed that the development was highly unstable and chan-
ged from preferring low frequencies, over totally noisy distribution, to preferring
high frequencies (see Figure 8.23, data from the smaller network). Other types of
inputs led to much more stable development.

Interestingly, the results from the smaller network were not so clear (see Figure
8.23). The degree of local heterogeneity was higher than in the larger network.
However, the noise input experiment is again distinct in having predominant
preference for a common range of frequency (here lower).

137

Figure 8.22: A tonotopic map after the learning experiment. The network
with 50,000 neurons. Left-top: few pure tones (note the tonotopy also in other
than input layers). Right-top: mor pure tones (also rather tonotopic). Left-
bottom: noise (disturbed tonotopy and apparent preference of extreme (here
high) frequencies). Right-bottom: normal tones (very coarse tonotopy).

138

Figure 8.23: A tonotopic map after the learning experiment. The network
with 10,000 neurons. Left-top: few pure tones. Right-top: mor pure tones. Left-
bottom: noise. Right-bottom: normal tones.

139

Figure 8.24: An example of tonotopic maps within the basket neuron types.
Results from the larger network, after the learning experiment. Note that the
tonotopy is apparent even in non-input layers (also L2/3).

140

Degree of local heterogeneity The resulting degree of local heterogeneity is
displayed in Figure 8.25. It corresponds to the previous observations. The noise
experiment is the most heterogeneous one, especially in layers L4–6. However the
measure of tonotopy is relatively balanced between neuron types. The experi-
ments with pure tones have clearly lowest degree of local heterogeneity in L6.
On the other hand, experiment with normal tones led to high tonotopy of bas-
ket neurons in all layers (see also Figure 8.24). This observation was consistent
between network sizes and during the experiment.

Figure 8.25: Degree of local heterogeneity of the network with 50,000 neurons
after the learning experiment. Left-top: few pure tones. Right-top: mor pure
tones. Left-bottom: noise. Right-bottom: normal tones.

141

8.3.3 Analysis and discussion of the results

We will summarize and discuss the five main results from the last group of expe-
riments:

1. The frequency organization is more heterogeneous in L2/3 (the main output
layer) than in L4 layer. This is consistent with in vivo observations from
the mouse AC (Winkowski and Kanold, 2013).

2. The observed RFs are generally similar to RFs observed in vivo data from
the mouse AC (see Figure 8.21).

3. The results confirmed the main points of the hypothesis on emergence of
tonotopy: noise led to disrupted tonotopy, while pure tones led to reaso-
nable tonotopy. However, the difference between few and more pure tones
was not so distinct. The normal tones led to an intermediate state. But
further experiments would be needed to compare these results to the in
vivo observations.

4. The network size matters and small network may not be sufficient for emer-
gence of clearer tonotopy. This point may be influenced by the fact that the
smaller network was sparser and therefore neurons did not always receive
the ideal number of synapses (recommended by the connectome table). It is
possible that the density of connections was not sufficient for propagation
of tonotopy.

5. The emergence of tonotopy is, on one hand, logical result of tonotopic in-
puts and higher probability of near connections than distant ones. However,
on the other hand, when realising that in our model as well as in reality,
the connections are not (at least not simply) deterministic and distant con-
nections and relatively orderless connections are present, the emergence of
tonotopy is also not obvious. (This is supported also by observations in
our model, where noise or only spontaneous activity was not sufficient for
emergence of tonotopy in other non-input layers.) We assume that for this
balance of tonotopy and heterogeneity, the connectome of the model should
not be totally deterministic (e.g., neurons arranged in a grid and nearby
neurons connected), as it was often modelled in the existing AC models
(de Pinho et al., 2006; Zhou et al., 2012; Chrostowski et al., 2011). In such
deterministic connectome the tonotopic arrangement emerges much easier.

8.4 Conclusion

The designed model of the AC resulted in behaviour consistent, in several aspects,
with in vivo observations. The main achievements are summarized in the following
chapter. However, the performed experiments have several limitations. We list the
main features, which could be done in future more in detail:

1. A better and more precise comparison to the real data. This phase should be
performed in cooperation of a computer scientist with a neuroscientist(s),
because a computer scientist is not typically so well versed in neuroscience

142

and does not have so broad knowledge of the published neuroscientific re-
sults. In addition to that, a more precise comparison to the real data would
be beneficial not only for model validation, but especially for searching for
new coherences. These could lead to design of new hypotheses and expe-
riments (both in vivo and in silico). Among others, let us mention e.g.,
experiments with travelling waves, which are assumed to be related to va-
rious disorders (Charles and Brennan, 2009; Houweling et al., 2005).

In this thesis, the model was designed in cooperation with neuroscientists,
but the analysis of the experiments must was done only by the author of
the thesis.

2. A broader exploration the space of parameters: more parameters and more
values.

3. Longer experiments. It is positive that all features measured during the
spontaneous activity seemed stable. However, in such dynamic and sto-
chastic systems as neural networks, changes may happen even after longer
period of time. More importantly, the experiments with specific inputs las-
ted only up to 2 h of model time, which much less than the critical learning
period of real brain (which lasts days to weeks).

4. Larger networks. It is positive that the main measured features were gene-
rally same in all tested network sizes. However in the tonotopic experiments,
the results were different. On one hand, it indicates that networks with less
than 10,000 of neurons may be too small to lead to plausible results. On
the other hand, it also indicates that even 50,000 or 100,000 neurons (as
tested in this thesis) may not be sufficient and at least verifying this fact
would be beneficial.

5. More repetitions. The main measured features exhibited generally the same
results in all performed experiments (even in many preliminary experiments,
which are not described in the text). However, the tonotopic experiments
should be done in more repetitions to prove their significance.

143

9. Model of the Auditory Cortex:
Discussion

In this thesis, we presented a model of the AC with the following features:

1. Spiking neurons modelled by the Izhikevich neuron model, which is conside-
red toe one of the most plausible models applicable in large-scale networks

2. A high diversity of neuronal types (17 types)

3. Synaptic connections with conduction delays and long term plasticity in the
form of STDP

4. A detailed stochastic connectome based on the real data – however not
exactly from the AC, but from the visual cortex of cat (Binzegger et al.,
2004), adopted from (Izhikevich and Edelman, 2008)

5. Structure of network based on the real data from (DeFelipe et al., 2002)

6. Included model of spontaneous synaptic release (mPSCs) based on the real
data from (Kotak et al., 2005)

We tested the model in three sizes: 10, 50, and 100 thousand of neurons. The
largest network contained almost 21 million of synapses. We tested the model in
dozens of experiments, where the longest lasted 5 h of model time. The results
described in this thesis were based on 50 final experiments, which lasted together
133,000 s (over 1.5 day) of model time and 920,000 s (over 10 days) of real time.
The automatic analyses of the experiment (in the Matlab part of SUSNOIMAC
tool) lasted at least half of this time. In addition to that, we do not count here
a large number of preliminary experiments, which were necessary to run before
the final experiments.

To our knowledge, any other model of the AC of a comparable size and du-
ration of simulation was not published yet.

The main results from the experiments are:

1. Stable development of all measured features (e.g., firing rate and weights)

2. Presence of the network oscillations: low frequencies arose in the entire
network, whereas high frequencies (e.g, gamma) were present in local areas,
which is consistent with real data (Izhikevich and Edelman, 2008; Nunez
and Srinivasan, 2006).

3. Presence of two alternating states: one with higher synchronisation (ob-
servable from both the spike times raster plot and analysis of global and
local waves) and one with lower synchronization. This observation seems
similar to the observations from the real AC in vivo in both anesthetized
(Sakata and Harris, 2012; Clement et al., 2008; Sakata and Harris, 2009),
and unanesthetized (Sakata and Harris, 2012) animals. We consider this
feature important also for two other reasons. First, this feature was not

144

built in the model, but emerged on its own. Second, we are not aware of
other studies of models with Izhikevich neurons, which would describe this
feature.

4. Clear emergence of tonotopy in the input layer L4 and much lower degree of
tonotopy in the main output layer L2/3, which is in outline consistent with
in vivo observations from the recent study (Winkowski and Kanold, 2013).
We also studied resemblance of the model results and in vivo results in
terms of the receptive fields of neurons from the layer L2/3. The RFs were
in outline qualitatively comparable. However, a more detailed comparison
could be contributing and potentially inspiring.

5. The results confirmed the main points of the hypothesis described in the
Section 6.1.1: noise led to disrupted tonotopy (as in vivo (Chang and Mer-
zenich, 2003; Zhang et al., 2002)), while pure tones led to reasonable tono-
topy. Therefore it contributes the idea that the coarse tonotopy, but local
heterogeneity may be an emergent result of tonotopic input from the tha-
lamus and the long-term plasticity. However, additional experiments would
be necessary to examine the influence of types of inputs on the degree of
tonotopy (both in vivo and in silico). Also a more detailed comparison
of degree of tonotopy would be necessary, to explore the hypothesis in its
entire meaning.

6. The size of network had a great impact on the tonotopy-related results (in
small network the degree of tonotopy in non-input layers was much lower).
This may be considered a result useful for future modelling of the AC (e.g.,
when scientist looks for model of neuron and simulator, the knowledge of
the bottom bound of network size to achieve a certain phenomenon may be
beneficial).

We suggest the following future works with the model:

1. More detailed data about inner structure of the network (connectome, types
of neurons, etc.), based on data exactly from the AC, ideally from one
species.

2. More realistic and complex inputs from the auditory thalamus (e.g., inputs
coding AM and FM sweeps)

3. Relation to other parts of the cortex/brain (e.g., inputs on the boudaries,
potentially also feedback from L6 to thalamus)

4. Parameters of mPSCs dependent on the synapse or neuron types

5. Measurement of other features (e.g., Post Stimulus Time Histogram (PSTH)
and classification of ON and OFF neurons, Rate Level Function (RLF),
Inter-spike Intervals (ISI), travelling waves, other measurements related to
tonotopy, noise correlations, oscillations measured as weighted average of
membrane potentials, instead of spikes, polychronous groups, and others)

145

6. Other future work related to experiments, which have been described in the
concluding section of the Model Results: Section 8.4, such as even larger
network and longer simulation.

7. Other enhancements of the used models (multi-compartmental model of
neuron, different synapse kinetics (AMPA, NMDA, GABA), short-term
plasticity), dopaminergic rewards, etc.)

8. Population encoding of auditory stimuli (e.g., in the form of polychronous
groups)

9. Extensions of the model to research origins of neural disorders (e.g., hearing
loss, or epilepsy)

146

10. Conclusion

In this thesis, we presented a new simulator SUSNOIMAC (Simulator Using Spi-
king Neurons Originally Intended for Modelling Auditory Cortex) and a new mo-
del of the AC. The simulator SUSNOIMAC can be used for simulating networks
with any parametrization of Izhikevich neurons, synaptic delays and STDP long-
term plasticity. It contains many performance optimizations (as well as built-in
paralellization) that make possible to compute large networks (we tested ne-
tworks, which had up to 100 thousands of neurons and 21 millions of synapses).
Besides, it allows any connectivity between neurons, and high flexibility in inputs,
as well as built-in mechanism for spontaneous activity (mPSCs). The models can
be implemented in Java, or the existing model can be used without need of pro-
gramming. It also allows batch processing of more experiments. In addition to the
simulation part, SUSNOIMAC contains also tools for analysis of the results: for
smaller networks a retrospective visualization in Java and for all networks several
scripts for analysis written in Matlab.

The main features and results of the model were described in the previous
Chapter 9. The model consists of six layers (but layers L2 and L3 are treated as
one), 17 neuron types, and detailed connectome.

The main future works related to the model were also described in the pre-
vious Chapter 9. Possible future works related to the simulator would be further
optimization (e.g., using CUDA), extension for other modelling possibilities (e.g.,
short-term plasticity), or user graphical interface for creating new models.

The main achievement of this thesis could be summarized as follows:

1. Software: the SUSNOIMAC simulator (to our knowledge the first simulator
specialized for modelling the AC).

2. Modelling impact: besides the model itself (its achievements were summa-
rized in the previous chapter), we also performed a review of the existing
models of the AC (to our knowledge the first review of the models of the AC
with spiking neurons), and conducted several experiments with the model.

3. Biological: the results of the experiments lay new inspiration on several
phenomenons (mainly the tonotopy) and may lead to new explanations of
these phenomenons in the future.

147

Bibliography

ALONSO, Jose-Manuel, CHEN, Yao. Receptive field. Scholarpedia, 4(1):5393,
2009.

ALPAYDIN, Ethem. Introduction to machine learning. The MIT Press, 2004.

ANANTHANARAYANAN, Rajagopal, ESSER, Steven K., SIMON, Horst D.,
MODHA, Dharmendra S. The cat is out of the bag: cortical simulations with
109 neurons, 1013 synapses. In High Performance Computing Networking,
Storage and Analysis, Proceedings of the Conference on, pages 1–12. IEEE,
2009.

ARIELI, Amos, SHOHAM, D., HILDESHEIM, R., GRINVALD, A. Coherent
spatiotemporal patterns of ongoing activity revealed by real-time optical ima-
ging coupled with single-unit recording in the cat visual cortex. Journal of
Neurophysiology, 73(5):2072–2093, 1995.

ASSMANN, Peter, SUMMERFIELD, Quentin. The perception of speech under
adverse conditions, pages 231–308. Springer, 2004.

BANDYOPADHYAY, Sharba, SHAMMA, Shihab A., KANOLD, Patrick O. Di-
chotomy of functional organization in the mouse auditory cortex. Nature neu-
roscience, 13(3):361–368, 2010.

BAO, Shaowen, CHANG, Edward F., DAVIS, Jonathan D., GOBESKE, Ke-
vin T., MERZENICH, Michael M. Progressive degradation and subsequent
refinement of acoustic representations in the adult auditory cortex. The Jour-
nal of neuroscience, 23(34):10765–10775, 2003.

BARBOUR, Dennis L., CALLAWAY, Edward M. Excitatory local connections
of superficial neurons in rat auditory cortex. The Journal of Neuroscience, 28
(44):11174–11185, 2008.

BART, Evgeniy, BAO, Shaowen, HOLCMAN, David. Modeling the spontaneous
activity of the auditory cortex. Journal of computational neuroscience, 19(3):
357–378, 2005.

BATHELLIER, Brice, USHAKOVA, Lyubov, RUMPEL, Simon. Discrete neo-
cortical dynamics predict behavioral categorization of sounds. Neuron, 76(2):
435–449, 2012.

BAXTER, Douglas A., BYRNE, John H. Simulator for neural networks and
action potentials, pages 127–154. Springer, 2007.

BEAR, Mark F., CONNORS, Barry W., PARADISO, Michael A. Neuroscience.
Lippincott Williams & Wilkins, 2007.

BEIERLEIN, Michael, GIBSON, Jay R., CONNORS, Barry W. Two dynamically
distinct inhibitory networks in layer 4 of the neocortex. Journal of neurophys-
iology, 90(5):2987–3000, 2003.

148

BHALLA, Upinder S. Use of kinetikit and genesis for modeling signaling pathwa-
ys. Methods in enzymology, 345:3–23, 2002.

BINZEGGER, Tom, DOUGLAS, Rodney J., MARTIN, Kevan A. C. A quanti-
tative map of the circuit of cat primary visual cortex. The Journal of Neuros-
cience, 24(39):8441–8453, 2004.

BIONDI, Emanuele. Auditory processing of speech and its implications with
respect to prosthetic rehabilitation. the bioengineering viewpoint. International
Journal of Audiology, 17(1):43–50, 1978.

BIONDI, Emanuele, SCHMID, Roberto. Mathematical models and prostheses for
sense organs. Theory and Applications of Variable Structure Systems. London:
Academic, pages 183–211, 1972.

BIZLEY, Jennifer K., NODAL, Fernando R., NELKEN, Israel, KING, Andrew J.
Functional organization of ferret auditory cortex. Cerebral Cortex, 15(10):
1637–1653, 2005.

BLACK, E. P. Euclidean distance, 2004. URL http://www.nist.gov/dads/

HTML/euclidndstnc.html.

BLACK, E. P. Manhattan distance, 2006. URL http://www.nist.gov/dads/

HTML/manhattanDistance.html.

BOWER, James M., BEEMAN, David. Constructing realistic neural simulations
with GENESIS, pages 103–125. Springer, 2007.

BOWER, James M., BOLOURI, Hamid. Computational modeling of genetic and
biochemical networks. The MIT Press, 2004.

BOWER, James M., BEEMAN, David, WYLDE, Allan M. The book of GE-
NESIS: exploring realistic neural models with the GEneral NEural SImulation
System. Telos New York, NY, 1998.

BRETTE, Romain, RUDOLPH, Michelle, CARNEVALE, Ted, HINES, Michael,
BEEMAN, David, BOWER, James M., DIESMANN, Markus, MORRISON,
Abigail, GOODMAN, Philip H., HARRIS JR, Frederick C. Simulation of ne-
tworks of spiking neurons: a review of tools and strategies. Journal of compu-
tational neuroscience, 23(3):349–398, 2007.

BROCKMANN, L. (wikipedia.org) C. Anatomy of the human ear, 2009. URL
http://en.wikipedia.org/wiki/File:Anatomy_of_the_Human_Ear.svg.

BRODAL, Per. The central nervous system. Oxford University Press, 2010.

BROWN, Guy J., COOKE, Martin. Computational auditory scene analysis.
Computer speech and language, 8(4):297–336, 1994.

BROWN, Randy. Calendar queues: a fast 0 (1) priority queue implementation
for the simulation event set problem. Communications of the ACM, 31(10):
1220–1227, 1988.

149

http://www.nist.gov/dads/HTML/euclidndstnc.html
http://www.nist.gov/dads/HTML/euclidndstnc.html
http://www.nist.gov/dads/HTML/manhattanDistance.html
http://www.nist.gov/dads/HTML/manhattanDistance.html
http://en.wikipedia.org/wiki/File:Anatomy_of_the_Human_Ear.svg

BRUGGE, John F., REALE, Richard A. Auditory cortex. Cerebral cortex, 4:
229–271, 1985.

BRUNEL, Nicolas, ROSSUM, Mark C. W. Lapicque’s 1907 paper: from frogs to
integrate-and-fire. Biological cybernetics, 97(5-6):337–339, 2007.

BRUNEL, Nicolas, WANG, Xiao-Jing. Effects of neuromodulation in a cortical
network model of object working memory dominated by recurrent inhibition.
Journal of computational neuroscience, 11(1):63–85, 2001.

BUZSáKI, György, ANASTASSIOU, Costas A., KOCH, Christof. The origin of
extracellular fields and currents—eeg, ecog, lfp and spikes. Nature Reviews
Neuroscience, 13(6):407–420, 2012.

CANNON, Robert C., HASSELMO, Michael E., KOENE, Randal A. From bio-
physics to behavior. Neuroinformatics, 1(1):3–42, 2003.

CARNEVALE, Nicholas T., HINES, Michael L. The NEURON book. Cambridge
University Press, 2006.

CHANG, Edward F., MERZENICH, Michael M. Environmental noise retards
auditory cortical development. Science, 300(5618):498–502, 2003.

CHARLES, Anthony, BRENNAN, K. C. Cortical spreading depression—new
insights and persistent questions. Cephalalgia, 29(10):1115–1124, 2009.

CHROSTOWSKI, Michael, YANG, Le, WILSON, Hugh R, BRUCE, Ian C, BEC-
KER, Suzanna. Can homeostatic plasticity in deafferented primary auditory
cortex lead to travelling waves of excitation? Journal of computational neuros-
cience, 30(2):279–299, 2011.

CLEMENT, Elizabeth A., RICHARD, Alby, THWAITES, Megan, AILON, Jo-
nathan, PETERS, Steven, DICKSON, Clayton T. Cyclic and sleep-like spon-
taneous alternations of brain state under urethane anaesthesia. PLoS One, 3
(4):e2004, 2008.

CONNORS, Barry W., GUTNICK, Michael J. Intrinsic firing patterns of diverse
neocortical neurons. Trends in neurosciences, 13(3):99–104, 1990.

CONTRERAS, Diego. Electrophysiological classes of neocortical neurons. Neural
Networks, 17(5):633–646, 2004.

CORMEN, Thomas H., LEISERSON, Charles E., RIVEST, Ronald L., STEIN,
Clifford. Introduction to algorithms. MIT press, 2001.

CRUIKSHANK, Scott J., ROSE, Heather J., METHERATE, Raju. Auditory
thalamocortical synaptic transmission in vitro. Journal of neurophysiology, 87
(1):361–384, 2002.

DAVISON, Andrew P., BRüDERLE, Daniel, EPPLER, Jochen, KREMKOW,
Jens, MULLER, Eilif, PECEVSKI, Dejan, PERRINET, Laurent, YGER,
Pierre. Pynn: a common interface for neuronal network simulators. Frontiers
in neuroinformatics, 2, 2008.

150

DAYAN, Peter, ABBOTT, Laurence F., ABBOTT, L. Theoretical neuroscience:
Computational and mathematical modeling of neural systems. MIT press
Cambridge, MA, 2001.

ROCHA, Jaime, MARCHETTI, Cristina, SCHIFF, Max, REYES, Alex D. Lin-
king the response properties of cells in auditory cortex with network archi-
tecture: cotuning versus lateral inhibition. The Journal of Neuroscience, 28
(37):9151–9163, 2008.

PINHO, Marilene, SILVA, Antônio C. A realistic computational model of formati-
on and variability of tonotopic maps in the auditory cortex. Neurocomputing,
26:355–359, 1999.

PINHO, Marilene, MAZZA, Marcelo, ROQUE, Antônio C. A biologically plausi-
ble computational model of classical conditioning induced reorganization of
tonotopic maps in the auditory cortex. Neurocomputing, 32:685–691, 2000.

PINHO, Marilene, MAZZA, Marcelo, ROQUE, Antonio C. A realistic model of
tonotopic reorganization in the auditory cortex in response to cochlear lesions.
Neurocomputing, 38:1169–1174, 2001.

PINHO, Marilene, MAZZA, Marcelo, PIQUEIRA, José Roberto C., ROQUE,
Antonio C. Shannon’s entropy applied to the analysis of tonotopic reorgani-
zation in a computational model of classical conditioning. Neurocomputing, 44:
359–364, 2002.

PINHO, Marilene, MAZZA, Marcelo, ROQUE, Antônio C. A computational
model of the primary auditory cortex exhibiting plasticity in the frequency
representation. Neurocomputing, 70(1):3–8, 2006.

DEFELIPE, Javier, ALONSO-NANCLARES, Lidia, ARELLANO, Jon I.
Microstructure of the neocortex: comparative aspects. Journal of neurocy-
tology, 31(3-5):299–316, 2002.

DESAI, Niraj S., CUDMORE, Robert H., NELSON, Sacha B., TURRIGIANO,
Gina G. Critical periods for experience-dependent synaptic scaling in visual
cortex. Nature neuroscience, 5(8):783–789, 2002.

EDWARDS, Brent. Hearing aids and hearing impairment, pages 339–421. Sprin-
ger, 2004.

EDWARDS, Brent. The future of hearing aid technology. Trends in Amplification,
11(1):31–46, 2007.

EGGERMONT, J. J. Computational models of the auditory system, volume 35,
chapter The Auditory Cortex: The Final Frontier. Springer, 2010.

EGGERMONT, Jos J. Between sound and perception: reviewing the search for
a neural code. Hearing research, 157(1):1–42, 2001.

ELF, Johan, EHRENBERG, Måns. Spontaneous separation of bi-stable bioche-
mical systems into spatial domains of opposite phases. Systems biology, 1(2):
230–236, 2004.

151

ELIASMITH, Chris, ANDERSON, C. Charles H. Neural engineering: Computati-
on, representation, and dynamics in neurobiological systems. The MIT Press,
2003.

ELIASMITH, Chris, STEWART, Terrence C., CHOO, Xuan, BEKOLAY, Trevor,
DEWOLF, Travis, TANG, Charlie, RASMUSSEN, Daniel. A large-scale model
of the functioning brain. science, 338(6111):1202–1205, 2012.

ERMENTROUT, Bard. Simulating, analyzing, and animating dynamical sys-
tems: a guide to XPPAUT for researchers and students, volume 14. Society
for Industrial and Applied Mathematics, 2004.

EVANS, E. F., NELSON, P. G. The responses of single neurones in the cochlear
nucleus of the cat as a function of their location and the anaesthetic state.
Experimental Brain Research, 17(4):402–427, 1973.

FALL, Christopher P. Computational cell biology, volume 20. Springer Verlag,
2005.

FIDJELAND, Andreas K., SHANAHAN, Murray P. Accelerated simulation of
spiking neural networks using gpus. In Neural Networks (IJCNN), The 2010
International Joint Conference on, pages 1–8. IEEE, 2010.

FITZHUGH, Richard. Mathematical models of threshold phenomena in the nerve
membrane. The bulletin of mathematical biophysics, 17(4):257–278, 1955.

FODRóCZI, Zoltán, RADVáNYI, András. Computational auditory scene analysis
in cellular wave computing framework. International journal of circuit theory
and applications, 34(4):489–515, 2006.

GAESE, Bernhard H. Population coding in the auditory cortex. Progress in brain
research, 130:221–230, 2001.

GERBER, Urs. Metabotropic glutamate receptors in vertebrate retina. Docu-
menta ophthalmologica, 106(1):83–87, 2003.

GERSTNER, Wulfram, KISTLER, Werner M. Spiking neuron models: Single
neurons, populations, plasticity. Cambridge university press, 2002.

GEWALTIG, Marc-Oliver, DIESMANN, Markus. Nest (neural simulation tool).
Scholarpedia, 2(4):1430, 2007.

GIBSON, Jay R., BEIERLEIN, Michael, CONNORS, Barry W. Two networks of
electrically coupled inhibitory neurons in neocortex. Nature, 402(6757):75–79,
1999.

GLEESON, Padraig, STEUBER, Volker, SILVER, R. Angus. neuroconstruct: a
tool for modeling networks of neurons in 3d space. Neuron, 54(2):219, 2007.

GLEESON, Padraig, CROOK, Sharon, BARNES, Simon, SILVER, Angus. Inte-
roperable model components for biologically realistic single neuron and network
models implemented in neuroml. In Frontiers in Neuroinformatics. Conference
Abstract: Neuroinformatics, 2008.

152

GODDARD, Nigel H., HUCKA, Michael, HOWELL, Fred, CORNELIS, Hugo,
SHANKAR, Kavita, BEEMAN, David. Towards neuroml: model description
methods for collaborative modelling in neuroscience. Philosophical Transacti-
ons of the Royal Society of London. Series B: Biological Sciences, 356(1412):
1209–1228, 2001.

GOLDBERG, David E. Genetic algorithms in search, optimization, and machine
learning. Addison-Wesley Professional, 1989.

GONZALEZ-ISLAS, Carlos, WENNER, Peter. Spontaneous network activity in
the embryonic spinal cord regulates ampaergic and gabaergic synaptic strength.
Neuron, 49(4):563–575, 2006.

GOODMAN, Dan, BRETTE, Romain. Brian: a simulator for spiking neural
networks in python. Frontiers in neuroinformatics, 2, 2008.

GOODMAN, Dan F. M., BRETTE, Romain. The brian simulator. Frontiers in
neuroscience, 3(2):192, 2009.

GRAY, Charles M., MCCORMICK, David A. Chattering cells: superficial pyra-
midal neurons contributing to the generation of synchronous oscillations in the
visual cortex. Science, 274(5284):109–113, 1996.

GREENBERG, Steven. Computational models of auditory function, volume 312.
Ios PressInc, 2001.

GREENWOOD, Donald D., MARUYAMA, Naoshige. Excitatory and inhibi-
tory response areas of auditory neurons in the cochlear nucleus. Journal of
neurophysiology, 28(5):863–892, 1965.

GRIFFITHS, Timothy D., WARREN, Jason D. What is an auditory object?
Nature Reviews Neuroscience, 5(11):887–892, 2004.

HAMMARLUND, Per, EKEBERG, Örjan. Large neural network simulations
on multiple hardware platforms. Journal of computational neuroscience, 5(4):
443–459, 1998.

HANSEL, D, MATO, G. Existence and stability of persistent states in large
neuronal networks. Physical review letters, 86(18):4175–4178, 2001.

HARRIS, Kenneth D., BARTHO, Peter, CHADDERTON, Paul, CURTO, Ca-
rina, ROCHA, Jaime, HOLLENDER, Liad, ITSKOV, Vladimir, LUCZAK,
Artur, MARGUET, Stephan L., RENART, Alfonso. How do neurons work
together? lessons from auditory cortex. Hearing research, 271(1):37–53, 2011.

HERCULANO-HOUZEL, Suzana. The human brain in numbers: a linearly
scaled-up primate brain. Frontiers in human neuroscience, 3, 2009.

HINES, Michael L., CARNEVALE, Nicholas T. The neuron simulation environ-
ment. Neural computation, 9(6):1179–1209, 1997.

HINES, Michael L., CARNEVALE, Nicholas T. Neuron: a tool for neuroscientists.
The Neuroscientist, 7(2):123–135, 2001.

153

HODGKIN, Alan L. The local electric changes associated with repetitive action
in a non-medullated axon. The Journal of physiology, 107(2):165–181, 1948.

HODGKIN, Alan L., HUXLEY, Andrew F. A quantitative description of mem-
brane current and its application to conduction and excitation in nerve. The
Journal of physiology, 117(4):500, 1952.

HOUWELING, Arthur R., BAZHENOV, Maxim, TIMOFEEV, Igor, STERIA-
DE, Mircea, SEJNOWSKI, Terrence J. Homeostatic synaptic plasticity can
explain post-traumatic epileptogenesis in chronically isolated neocortex. Cere-
bral Cortex, 15(6):834–845, 2005.

HUANG, Camillan L., WINER, Jeffery A. Auditory thalamocortical projecti-
ons in the cat: laminar and areal patterns of input. Journal of Comparative
Neurology, 427(2):302–331, 2000.

INITIATIVE, NEST. Nest, 2013. URL http://www.nest-initiative.org/

index.php/Software:Installation.

IZHIKEVICH, Eugene M. Simple model of spiking neurons. Neural Networks,
IEEE Transactions on, 14(6):1569–1572, 2003.

IZHIKEVICH, Eugene M. Which model to use for cortical spiking neurons?
Neural Networks, IEEE Transactions on, 15(5):1063–1070, 2004.

IZHIKEVICH, Eugene M. Polychronization: Computation with spikes. Neural
computation, 18(2):245–282, 2006.

IZHIKEVICH, Eugene M. Solving the distal reward problem through linkage of
stdp and dopamine signaling. Cerebral Cortex, 17(10):2443–2452, 2007.

IZHIKEVICH, Eugene M., EDELMAN, Gerald M. Large-scale model of mamma-
lian thalamocortical systems. Proceedings of the national academy of sciences,
105(9):3593–3598, 2008.

IZHIKEVICH, Eugene M., GALLY, Joseph A., EDELMAN, Gerald M. Spike-
timing dynamics of neuronal groups. Cerebral Cortex, 14(8):933–944, 2004a.

IZHIKEVICH, Eugene M, GALLY, Joseph A, EDELMAN, Gerald M. Spike-
timing dynamics of neuronal groups. Cerebral Cortex, 14(8):933–944, 2004b.

JOLIVET, Renaud, RAUCH, Alexander, LüSCHER, Hans-Rudolf, GERSTNER,
Wulfram. Predicting spike timing of neocortical pyramidal neurons by simple
threshold models. Journal of computational neuroscience, 21(1):35–49, 2006.

KAWAGUCHI, Yasuo. Physiological subgroups of nonpyramidal cells with speci-
fic morphological characteristics in layer ii/iii of rat frontal cortex. The Journal
of neuroscience, 15(4):2638–2655, 1995.

KAWAGUCHI, Yasuo, KUBOTA, Yoshiyuki. Gabaergic cell subtypes and their
synaptic connections in rat frontal cortex. Cerebral Cortex, 7(6):476–486, 1997.

154

http://www.nest-initiative.org/index.php/Software:Installation
http://www.nest-initiative.org/index.php/Software:Installation

KIMURA, Akihisa, DONISHI, Tomohiro, SAKODA, Takema, HAZAMA, Michio,
TAMAI, Yasuhiko. Auditory thalamic nuclei projections to the temporal cortex
in the rat. Neuroscience, 117(4):1003–1016, 2003.

KNIGHT, Bruce W. Dynamics of encoding in a population of neurons. The
Journal of General Physiology, 59(6):734–766, 1972.

KOELSCH, Stefan, SIEBEL, Walter A. Towards a neural basis of music percep-
tion. Trends in cognitive sciences, 9(12):578–584, 2005.

KOTAK, Vibhakar C., FUJISAWA, Sho, LEE, Fanyee Anja, KARTHIKEYAN,
Omkar, AOKI, Chiye, SANES, Dan H. Hearing loss raises excitability in the
auditory cortex. The Journal of neuroscience, 25(15):3908–3918, 2005.

KUWADA, Shigeyuki, STANFORD, Terrence R., BATRA, Ranjan. Interaural
phase-sensitive units in the inferior colliculus of the unanesthetized rabbit:
effects of changing frequency. Journal of neurophysiology, 57(5):1338–1360,
1987.

LAPICQUE, Louis. Recherches quantitatives sur l’excitation électrique des nerfs
traitée comme une polarisation. J. Physiol. Pathol. Gen, 9(1):620–635, 1907.

LARSON, Eric, BILLIMORIA, Cyrus P., SEN, Kamal. A biologically plausible
computational model for auditory object recognition. Journal of neurophysio-
logy, 101(1):323–331, 2008.

LARSON, Eric, PERRONE, Ben P., SEN, Kamal, BILLIMORIA, Cyrus P. A ro-
bust and biologically plausible spike pattern recognition network. The Journal
of Neuroscience, 30(46):15566–15572, 2010.

LE NOVERE, Nicolas, SHIMIZU, Thomas Simon. Stochsim: modelling of sto-
chastic biomolecular processes. Bioinformatics, 17(6):575–576, 2001.

LEVITT, Harry. Compression amplification, pages 153–183. Springer, 2004.

LEVY, Robert B., REYES, Alex D. Spatial profile of excitatory and inhibito-
ry synaptic connectivity in mouse primary auditory cortex. The Journal of
Neuroscience, 32(16):5609–5619, 2012.

LOEBEL, Alex, NELKEN, Israel, TSODYKS, Misha. Processing of sounds by
population spikes in a model of primary auditory cortex. Frontiers in neuros-
cience, 1(1):197, 2007.

MALMIERCA, Manuel S, HACKETT, Troy A. Structural organization of the
ascending auditory pathway. The Auditory Brain, pages 9–41, 2010.

MARKRAM, Henry. The blue brain project. Nature Reviews Neuroscience, 7
(2):153–160, 2006.

MARKRAM, Henry, TOLEDO-RODRIGUEZ, Maria, WANG, Yun, GUPTA,
Anirudh, SILBERBERG, Gilad, WU, Caizhi. Interneurons of the neocortical
inhibitory system. Nature Reviews Neuroscience, 5(10):793–807, 2004.

155

MARTIN, Stephen J., GRIMWOOD, Paul D., MORRIS, Richard G. M. Synaptic
plasticity and memory: an evaluation of the hypothesis. Annual review of
neuroscience, 23(1):649–711, 2000.

MATOUSEK, Jiri, NESETRIL, Jaroslav. Invitation to discrete mathematics.
Oxford University Press, 1998.

MATSUMOTO, Makoto, NISHIMURA, Takuji. Mersenne twister: a 623-
dimensionally equidistributed uniform pseudo-random number generator. ACM
Transactions on Modeling and Computer Simulation (TOMACS), 8(1):3–30,
1998.

MCCOMBE, Andrew, BAGULEY, David, COLES, Ross, MCKENNA, Laurence,
MCKINNEY, Catherina, WINDLE−TAYLOR, Paul. Guidelines for the gra-
ding of tinnitus severity: the results of a working group commissioned by the
british association of otolaryngologists, head and neck surgeons, 1999. Clinical
Otolaryngology & Allied Sciences, 26(5):388–393, 2001.

MCFADDEN, Dennis. Tinnitus: facts, theories, and treatments. National Aca-
demies Press, 1982.

MEDDIS, Ray. Computational models of the auditory system, volume 35. Sprin-
ger, 2010.

MEHRING, Carsten, HEHL, Ulrich, KUBO, Masayoshi, DIESMANN, Markus,
AERTSEN, Ad. Activity dynamics and propagation of synchronous spiking
in locally connected random networks. Biological cybernetics, 88(5):395–408,
2003.

MENDELSON, J. R., CYNADER, M. S. Sensitivity of cat primary auditory
cortex (al) neurons to the direction and rate of frequency modulation. Brain
research, 327(1):331–335, 1985.

MESGARANI, Nima, FRITZ, Jonathan, SHAMMA, Shihab. A computational
model of rapid task-related plasticity of auditory cortical receptive fields. Jour-
nal of computational neuroscience, 28(1):19–27, 2009.

METHERATE, Raju, ARAMAKIS, V. Bess. Intrinsic electrophysiology of neu-
rons in thalamorecipient layers of developing rat auditory cortex. Developmen-
tal brain research, 115(2):131–144, 1999.

MITANI, Akira, SHIMOKOUCHI, Minoru. Neuronal connections in the primary
auditory cortex: an electrophysiological study in the cat. Journal of Compara-
tive Neurology, 235(4):417–429, 1985.

MORRISON, Abigail, MEHRING, Carsten, GEISEL, Theo, AERTSEN, A. D.,
DIESMANN, Markus. Advancing the boundaries of high-connectivity network
simulation with distributed computing. Neural computation, 17(8):1776–1801,
2005.

MORRISON, Abigail, STRAUBE, Sirko, PLESSER, Hans Ekkehard, DIE-
SMANN, Markus. Exact subthreshold integration with continuous spike times

156

in discrete-time neural network simulations. Neural Computation, 19(1):47–79,
2007.

MORRISON, Abigail, DIESMANN, Markus, GERSTNER, Wulfram. Pheno-
menological models of synaptic plasticity based on spike timing. Biological
cybernetics, 98(6):459–478, 2008.

MUREşAN, Raul C., IGNAT, Iosif. The”neocortex”neural simulator. a modern
design. In International Conference on Intelligent Engineering Systems, Cluj-
Napoca, Romania, 2004.

MURESAN, Raul C., SAVIN, Cristina. Resonance or integration? self-sustained
dynamics and excitability of neural microcircuits. Journal of neurophysiology,
97(3):1911–1930, 2007.

NAGESWARAN, Jayram Moorkanikara, DUTT, Nikil, KRICHMAR, Jeffrey L.,
NICOLAU, Alex, VEIDENBAUM, Alexander V. A configurable simulation
environment for the efficient simulation of large-scale spiking neural networks
on graphics processors. Neural Networks, 22(5-6):791–800, 2009.

NATSCHLäGER, Thomas, MARKRAM, Henry, MAASS, Wolfgang. Computer
models and analysis tools for neural microcircuits, pages 123–138. Springer,
2003.

NELKEN, Israel. Processing of complex stimuli and natural scenes in the auditory
cortex. Current opinion in neurobiology, 14(4):474–480, 2004.

NELKEN, Israel, FISHBACH, Alon, LAS, Liora, ULANOVSKY, Nachum, FAR-
KAS, Dina. Primary auditory cortex of cats: feature detection or something
else? Biological cybernetics, 89(5):397–406, 2003.

NELKEN, Israel, BIZLEY, Jennifer K., NODAL, Fernando R., AHMED, Bashir,
SCHNUPP, Jan W. H., KING, Andrew J. Large−scale organization of ferret
auditory cortex revealed using continuous acquisition of intrinsic optical signals.
Journal of neurophysiology, 92(4):2574–2588, 2004.

NINI, Asaph, FEINGOLD, Ariela, SLOVIN, Hamutal, BERGMAN, Hagai. Neu-
rons in the globus pallidus do not show correlated activity in the normal mon-
key, but phase-locked oscillations appear in the mptp model of parkinsonism.
Journal of Neurophysiology, 74(4):1800–1805, 1995.

NORDLIE, Eilen, GEWALTIG, Marc-Oliver, PLESSER, Hans Ekkehard. To-
wards reproducible descriptions of neuronal network models. PLoS Computati-
onal Biology, 5(8):e1000456, 2009.

NääTäNEN, Risto, TERVANIEMI, Mari, SUSSMAN, Elyse, PAAVILAINEN,
Petri, WINKLER, István. ‘primitive intelligence’in the auditory cortex. Trends
in neurosciences, 24(5):283–288, 2001.

NUNEZ, Paul L., SRINIVASAN, Ramesh. Electric fields of the brain: the neuro-
physics of EEG. Oxford University Press, USA, 2006.

157

OHL, Frank W., SCHEICH, H., FREEMAN, W. J. Change in pattern of ongoing
cortical activity with auditory category learning. Nature, 412(6848):733–736,
2001.

OJIMA, Hisayuki. Terminal morphology and distribution of corticothalamic fi-
bers originating from layers 5 and 6 of cat primary auditory cortex. Cerebral
Cortex, 4(6):646–663, 1994.

ORACLE, Corporation. Netbeans ide, 2013. URL http://netbeans.org/.

OSWALD, Anne-Marie M., REYES, Alex D. Maturation of intrinsic and synaptic
properties of layer 2/3 pyramidal neurons in mouse auditory cortex. Journal
of neurophysiology, 99(6):2998–3008, 2008.

OTAZU, Gonzalo H., LEIBOLD, Christian. A corticothalamic circuit model for
sound identification in complex scenes. PloS one, 6(9):e24270, 2011.

PECEVSKI, Dejan. Parallel neural circuit simulator (pcsim) - tuto-
rial, 2008. URL www.lsm.tugraz.at/pcsim/tutorial/FIAS%20PCSIM%

20tutorial%203.ppt.

PECEVSKI, Dejan, NATSCHLäGER, Thomas, SCHUCH, Klaus. Pcsim: a pa-
rallel simulation environment for neural circuits fully integrated with python.
Frontiers in neuroinformatics, 3, 2009.

PEIERLS, Tim, GOETZ, Brian, BLOCH, Joshua, BOWBEER, Joseph, LEA,
Doug, HOLMES, David. Java concurrency in practice. Addison-Wesley Pro-
fessional, 2005.

PERCHA, Bethany, DZAKPASU, Rhonda, ŻOCHOWSKI, Micha l, PARENT,
Jack. Transition from local to global phase synchrony in small world neural
network and its possible implications for epilepsy. Physical Review E, 72(3):
031909, 2005.

PHILLIPS, Dennis P., KELLY, Jack B. Coding of tone-pulse amplitude by single
neurons in auditory cortex of albino rats (rattus norvegicus). Hearing research,
37(3):269–279, 1989.

PHOKA, Elena, WILDIE, Mark, SCHULTZ, Simon R., BARAHONA, Mauricio.
Sensory experience modifies spontaneous state dynamics in a large-scale barrel
cortical model. Journal of computational neuroscience, 33(2):323–339, 2012.

POLSTER, Michael R., ROSE, Sally B. Disorders of auditory processing: evi-
dence for modularity in audition. Cortex, 34(1):47–65, 1998.

PRESS, William H., TEUKOLSKY, Saul A., VETTERLING, William T., FLAN-
NERY, Brian P. Numerical recipes 3rd edition: The art of scientific computing.
Cambridge university press, 2007.

PRIETO, Jorge J., WINER, Jeffery A. Layer vi in cat primary auditory cortex:
Golgi study and sublaminar origins of projection neurons. Journal of Compa-
rative Neurology, 404(3):332–358, 1999.

158

http://netbeans.org/
www.lsm.tugraz.at/pcsim/tutorial/FIAS%20PCSIM%20tutorial%203.ppt
www.lsm.tugraz.at/pcsim/tutorial/FIAS%20PCSIM%20tutorial%203.ppt

PURVES, Dale, AUGUSTINE, George J., FITZPATRICK, David, KATZ, La-
wrence C., LAMANTIA, Anthony-Samuel, MCNAMARA, James O., WILLI-
AMS, S. Mark. The Auditory Cortex. Sinauer Associates, 2001.

REED, Russel D., MARKS, Robert J. Neural smithing: supervised learning in
feedforward artificial neural networks, 1999.

RICHET, Yann. jmathplot, 2013. URL https://code.google.com/p/

jmathplot/.

ROCHEL, Olivier, MARTINEZ, Dominique et al. An event-driven framework
for the simulation of networks of spiking neurons. In Proc. 11th European
symposium on artificial neural networks, pages 295–300, 2003.

ROMANSKI, Lizabeth M., LEDOUX, Joseph E. Organization of rodent audi-
tory cortex: anterograde transport of pha-l from mgv to temporal neocortex.
Cerebral Cortex, 3(6):499–514, 1993.

ROSE, R. M., HINDMARSH, J. L. The assembly of ionic currents in a thalamic
neuron i. the three-dimensional model. Proceedings of the Royal Society of
London. B. Biological Sciences, 237(1288):267–288, 1989.

ROSS, Deborah, CHOI, Jonathan, PURVES, Dale. Musical intervals in speech.
Proceedings of the National Academy of Sciences, 104(23):9852–9857, 2007.

ROSSUM, M. C. W. van. A novel spike distance. Neural Computation, 13(4):
751–763, 2001.

ROTHSCHILD, Gideon, NELKEN, Israel, MIZRAHI, Adi. Functional organi-
zation and population dynamics in the mouse primary auditory cortex. Nature
neuroscience, 13(3):353–360, 2010.

RUSS, Brian E., LEE, Yune-Sang, COHEN, Yale E. Neural and behavioral corre-
lates of auditory categorization. Hearing research, 229(1):204–212, 2007.

SAKATA, Shuzo, HARRIS, Kenneth D. Laminar structure of spontaneous and
sensory-evoked population activity in auditory cortex. Neuron, 64(3):404–418,
2009.

SAKATA, Shuzo, HARRIS, Kenneth D. Laminar-dependent effects of cortical
state on auditory cortical spontaneous activity. Frontiers in neural circuits, 6,
2012.

SALLY, Sharon L., KELLY, Jack B. Organization of auditory cortex in the albino
rat: sound frequency. Journal of Neurophysiology, 59(5):1627–1638, 1988.

SCHAETTE, Roland, KEMPTER, Richard. Development of tinnitus−related
neuronal hyperactivity through homeostatic plasticity after hearing loss: a com-
putational model. European Journal of Neuroscience, 23(11):3124–3138, 2006.

SCHIFF, Max L., REYES, Alex D. Characterization of thalamocortical responses
of regular-spiking and fast-spiking neurons of the mouse auditory cortex in vitro
and in silico. Journal of Neurophysiology, 107(5):1476–1488, 2012.

159

https://code.google.com/p/jmathplot/
https://code.google.com/p/jmathplot/

SCHREINER, Christoph E., READ, Heather L., SUTTER, Mitchell L. Modular
organization of frequency integration in primary auditory cortex. Annual review
of neuroscience, 23(1):501–529, 2000.

SCHUTTER, Erik De. Computational modeling methods for neuroscientists. The
MIT Press, 2010.

SHARPEE, Tatyana O., ATENCIO, Craig A., SCHREINER, Christoph E. Hie-
rarchical representations in the auditory cortex. Current opinion in neurobio-
logy, 21(5):761–767, 2011.

SJöSTRöM, Jesper, GERSTNER, Wulfram. Spike-timing dependent plasticity.
Spike-timing dependent plasticity, page 35, 2010.

SONG, Sen, MILLER, Kenneth D., ABBOTT, Larry F. Competitive hebbian
learning through spike-timing-dependent synaptic plasticity. Nat Neurosci, 3
(9):919–26, 2000.

STIEBLER, I., NEULIST, R., FICHTEL, I., EHRET, G. The auditory cortex of
the house mouse: left-right differences, tonotopic organization and quantitative
analysis of frequency representation. Journal of Comparative Physiology A,
181(6):559–571, 1997.

STILES, Joel R., BARTOL, Thomas M. Monte carlo methods for simulating
realistic synaptic microphysiology using mcell, 2001.

SUGA, Nobuo. Functional properties of auditory neurones in the cortex of echo-
locating bats. The Journal of physiology, 181(4):671, 1965.

SUGA, Nobuo, MA, Xiaofeng. Multiparametric corticofugal modulation and plas-
ticity in the auditory system. Nature Reviews Neuroscience, 4(10):783–794,
2003.

SWEATT, J. David. Mechanisms of memory. Academic Press, 2010.

TALBOT, K. Human temporal lobe areas, 2011. URL http://en.wikipedia.

org/wiki/File:Human_temporal_lobe_areas.png.

THEYEL, Brian B., LEE, Charles C., SHERMAN, S. Murray. Specific and non-
specific thalamocortical connectivity in the auditory and somatosensory thala-
mocortical slices. Neuroreport, 21(13):861, 2010.

TIMOFEEV, Igor, GRENIER, Francois, BAZHENOV, Maxim, SEJNOWSKI,
Terrence J., STERIADE, Mircea. Origin of slow cortical oscillations in deaffe-
rented cortical slabs. Cerebral Cortex, 10(12):1185–1199, 2000.

TOMITA, Masaru, HASHIMOTO, Kenta, TAKAHASHI, Koichi, SHIMIZU,
Thomas Simon, MATSUZAKI, Yuri, MIYOSHI, Fumihiko, SAITO, Kanako,
TANIDA, Sakura, YUGI, Katsuyuki, VENTER, J. Craig. E-cell: software en-
vironment for whole-cell simulation. Bioinformatics, 15(1):72–84, 1999.

TRAPPENBERG, Thomas P. Fundamentals of computational neuroscience. Ox-
ford University Press, 2010.

160

http://en.wikipedia.org/wiki/File:Human_temporal_lobe_areas.png
http://en.wikipedia.org/wiki/File:Human_temporal_lobe_areas.png

TSODYKS, Misha V., SEJNOWSKI, Terrence. Rapid state switching in balanced
cortical network models. Network: Computation in Neural Systems, 6(2):111–
124, 1995.

TUCKWELL, Henry C. Introduction to theoretical neuroscience, 1988.

TURRIGIANO, Gina G., LESLIE, Kenneth R., DESAI, Niraj S., RUTHER-
FORD, Lana C., NELSON, Sacha B. Activity-dependent scaling of quantal
amplitude in neocortical neurons. Nature, 391(6670):892–896, 1998.

VIDA, Imre, BARTOS, Marlene, JONAS, Peter. Shunting inhibition improves
robustness of gamma oscillations in hippocampal interneuron networks by ho-
mogenizing firing rates. Neuron, 49(1):107–118, 2006.

WANG, Xiao-Jing. Persistent neural activity: experiments and theory. Cerebral
Cortex, 13(11):1123–1123, 2003.

WANG, Xiaoqin, LU, Thomas, SNIDER, Ross K., LIANG, Li. Sustained firing in
auditory cortex evoked by preferred stimuli. Nature, 435(7040):341–346, 2005.

WATSON, Charles. The mouse nervous system. Academic Press, 2012.

WEINBERGER, N. M., ASHE, J. H., METHERATE, R., MCKENNA, T. M.,
DIAMOND, D. M., BAKIN, J. Retuning auditory cortex by learning: A pre-
liminary model of receptive field plasticity. Concepts Neurosci, 1(1):91–132,
1990.

WENDYKIER, Piotr. Parallel colt, 2013. URL https://sites.google.com/

site/piotrwendykier/software/parallelcolt.

WENDYKIER, Piotr, NAGY, James G. Parallel colt: a high-performance java
library for scientific computing and image processing. ACM Transactions on
Mathematical Software (TOMS), 37(3):31, 2010.

WIKIPEDIA.ORG. Synapse illustration2 tweaked, 2006. URL http://commons.

wikimedia.org/wiki/File:Synapse_Illustration2_tweaked.svg.

WIKIPEDIA.ORG. Gray756, 2007a. URL http://commons.wikimedia.org/

wiki/File:Gray756.png.

WIKIPEDIA.ORG. Complete neuron cell diagram en, 2007b. URL http://en.

wikipedia.org/wiki/File:Complete_neuron_cell_diagram_en.svg.

WIKIPEDIA.ORG. Brain surface gyri, 2007c. URL http://en.wikipedia.org/

wiki/File:Brain_Surface_Gyri.SVG.

WILSON, Blake S. Engineering design of cochlear implants. Springer Handbook
of Auditory Research, 20:14–52, 2004.

WILSON, Hugh R. Simplified dynamics of human and mammalian neocortical
neurons. Journal of theoretical biology, 200(4):375–388, 1999.

WILSON, Hugh R., COWAN, Jack D. Excitatory and inhibitory interactions in
localized populations of model neurons. Biophysical journal, 12(1):1–24, 1972.

161

https://sites.google.com/site/piotrwendykier/software/parallelcolt
https://sites.google.com/site/piotrwendykier/software/parallelcolt
http://commons.wikimedia.org/wiki/File:Synapse_Illustration2_tweaked.svg
http://commons.wikimedia.org/wiki/File:Synapse_Illustration2_tweaked.svg
http://commons.wikimedia.org/wiki/File:Gray756.png
http://commons.wikimedia.org/wiki/File:Gray756.png
http://en.wikipedia.org/wiki/File:Complete_neuron_cell_diagram_en.svg
http://en.wikipedia.org/wiki/File:Complete_neuron_cell_diagram_en.svg
http://en.wikipedia.org/wiki/File:Brain_Surface_Gyri.SVG
http://en.wikipedia.org/wiki/File:Brain_Surface_Gyri.SVG

WINER, Jeffery A. Decoding the auditory corticofugal systems. Hearing research,
212(1):1–8, 2005.

WINER, Jeffery A., LEE, Charles C. The distributed auditory cortex. Hearing
research, 229(1-2):3, 2007.

WINER, Jeffery A., PRIETO, Jorge J. Layer v in cat primary auditory cortex
(ai): cellular architecture and identification of projection neurons. Journal of
Comparative Neurology, 434(4):379–412, 2001.

WINKOWSKI, Daniel E., KANOLD, Patrick O. Laminar transformation of
frequency organization in auditory cortex. The Journal of Neuroscience, 33
(4):1498–1508, 2013.

WORGOTTER, Florentin, KOCH, Christof. A detailed model of the primary
visual pathway in the cat: comparison of afferent excitatory and intracorti-
cal inhibitory connection schemes for orientation selectivity. The Journal of
neuroscience, 11(7):1959–1979, 1991.

WU, Guangying K., TAO, Huizhong W., ZHANG, Li I. From elementary synaptic
circuits to information processing in primary auditory cortex. Neuroscience &
Biobehavioral Reviews, 35(10):2094–2104, 2011.

YOUNG, Eric D., BROWNELL, William E. Responses to tones and noise of
single cells in dorsal cochlear nucleus of unanesthetized cats. Journal of neu-
rophysiology, 39(2):282–300, 1976.

ZHANG, Li I, BAO, Shaowen, MERZENICH, Michael M. Persistent and specific
influences of early acoustic environments on primary auditory cortex. Nature
neuroscience, 4(11):1123–1130, 2001.

ZHANG, Li I., BAO, Shaowen, MERZENICH, Michael M. Disruption of pri-
mary auditory cortex by synchronous auditory inputs during a critical period.
Proceedings of the National Academy of Sciences, 99(4):2309–2314, 2002.

ZHANG, Li I., TAN, Andrew Y. Y., SCHREINER, Christoph E., MERZENICH,
Michael M. Topography and synaptic shaping of direction selectivity in primary
auditory cortex. Nature, 424(6945):201–205, 2003.

ZHOU, Yi, MESIK, Lukas, SUN, Yujiao J., LIANG, Feixue, XIAO, Zhongju,
TAO, Huizhong W., ZHANG, Li I. Generation of spike latency tuning by
thalamocortical circuits in auditory cortex. The Journal of Neuroscience, 32
(29):9969–9980, 2012.

ZHU, Yinghua, ZHU, J. Julius. Rapid arrival and integration of ascending sen-
sory information in layer 1 nonpyramidal neurons and tuft dendrites of layer
5 pyramidal neurons of the neocortex. The Journal of neuroscience, 24(6):
1272–1279, 2004.

ZILANY, Muhammad S. A., BRUCE, Ian C. Predictions of speech intelligibility
with a model of the normal and impaired auditory-periphery. In Neural Engi-
neering, 2007. CNE’07. 3rd International IEEE/EMBS Conference on Neural
Engineering, pages 481–485. IEEE, 2007.

162

ZIV, Israel, BAXTER, Douglas A., BYRNE, John H. Simulator for neural ne-
tworks and action potentials: description and application. Journal of neuro-
physiology, 71(1):294–308, 1994.

ZUCKER, Robert S., REGEHR, Wade G. Short-term synaptic plasticity. Annual
review of physiology, 64(1):355–405, 2002.

163

List of Tables

1.1 Possible values of parameters of the (Izhikevich, 2003) neuron mo-
del for the main cortical neuron classes, based on (Izhikevich, 2003). 17

1.2 Possible values of parameters of the (Izhikevich, 2007) neuron mo-
del for the main cortical neuron classes, based on (Izhikevich and
Edelman, 2008). 19

2.1 The results of the performance of four implementations of the ne-
twork with Izhikevich neuron model, synaptic delays, and STDP.
Duration was averaged over several measurements (the differences
between tests were negligible). 30

3.1 A comparison of different approaches to the model definition. . . . 34
3.2 The non-dynamic attributes of each neuron. The neurons must be

numbered from 0 to N NEURONS, where N NEURONS is the number of
all neurons and is a general attribute of the network module. . . . 37

3.3 The dynamic variables of each neuron. These variables are initi-
ated in the network module; however their following values are
controlled by the simulation core. 37

3.4 The non-dynamic attributes of each synapse. The delay must be a
positive number from the interval 〈0, MAX DELAY〉, where MAX DELAY

value is a general attribute of the network module. 37
3.5 The dynamic variables of each synapse. These variables are ini-

tiated in the network module; however their following values are
controlled by the simulation core. 37

3.6 The general non-dynamic attributes of the network. There are se-
veral other minor data structures (such as list of neuron types and
their features, or neuron layers and their features), which are not
so important, and they are described in the programmer documen-
tation. 39

3.7 The simulation parameters related to time. 57
3.8 The general simulation parameters. 58
3.9 The simulation parameters related to parameters of the used sy-

napse dynamics. 59
3.10 The simulation parameters related to parallelization. 59
3.11 The used names of oscillation waves. 68

4.1 Performance before improvements. The duration of execution of
1s (model time) simulation according to the network size (with
the same density of synapses). The results from the network with
100,000 neurons are not shown due to high memory demands. All
experiments measured on “[PC]”. 70

4.2 Performance after improvements. The duration of execution of 1
s (model time) simulation according to the network size (with the
same density of synapses). The two smaller networks were mea-
sured on “[PC]” (12 threads were used) and the two larger on
“[server]” (32 threads were used). 70

164

4.3 Performance after improvements according to the parts of the si-
mulation cycle. The duration of each part (columns) in s (real
time) of execution of 1 s (model time) simulation according to the
network size (rows). The two smaller networks were measured on
“[PC]” (12 threads were used) and the two larger on “[server]” (32
threads were used). 71

6.1 Comparison of the existing spiking models of the AC. Size: number
of neurons in the AC part of the model. Neuron types: neuron types
in the AC part of the model (p=pyramidal, b=basket, E=general
excitatory, I=general inhibitory). Neuron model: used model for
the neurons in the AC parth of the model. Synaptic plasticity.
Duration: duration of performed experiments. 82

7.1 The parameters of each layer in the model. 85
7.2 The parameters of each neuron type in the model. 86
7.3 The general parameters of the model. 104
7.4 Parameters of the model related to layers. 105
7.5 Parameters of the model related to neuron types. 105
7.6 Parameters of the model related to axonal areas (axonal radii in

layers). 106
7.7 Input parameters of an experiment. 106
7.8 The summarized tabular description of the designed model. 108

8.1 The settings of 14 experiments from the first group of experi-
ments: Parameter Space Search. The meaning of the columns
is following: N is number of neurons, T is duration of the experi-
ment (in s of model time), F and A are values of the parameters
M FREQUENCY and M AMPLITUDE of mPSCs, LTD is value of the
parameter PARAM LTD, INPUTS is type of inputs (here only spon-
taneous activity), LOG S and LOG D are values of parameters
LOG START and LOG DURATION, which here means that we saved
logs and analysed exactly the last 5 s of each experiment. 110

8.2 The settings of 3 experiments from the second group of experi-
ments: Features of the Chosen Parameters. The meaning of
the columns is following: N is number of neurons, T is duration
of the experiment (in s of model time), F and A are values of the
parameters M FREQUENCY and M AMPLITUDE of mPSCs, LTD is va-
lue of the parameter PARAM LTD, INPUTS is type of inputs (here
only spontaneous activity), LOG S and LOG D are values of pa-
rameters LOG START and LOG DURATION, which here means that we
analysed each 30 min (3 min in the case of the largest network) a
time frame with duration of 3 s. 122

165

8.3 The settings of 8 experiments from the third group of experi-
ments: Tonotopy Experiments. The meaning of the columns
is following: N is number of neurons, T is duration of the experi-
ment (in s of model time), F and A are values of the parameters
M FREQUENCY and M AMPLITUDE of mPSCs, LTD is value of the pa-
rameter PARAM LTD, INPUTS is type of inputs, LOG S and LOG D
are values of parameters LOG START and LOG DURATION, which here
means that we analysed each 30 min (10 min in the case of the lar-
ger network) a time frame with duration of 5 s. 129

166

Attachments

The thesis contains two text attachments:

1. The User Documentation

2. The Technical Documentation

167

	General Introduction
	Introduction to Neurobiology and Computational Neuroscience
	Brief overview of neurobiology
	Brief overview of neuroscientific modelling
	Level of Detail in models
	Low-level models
	Middle-level models
	High-level models
	Model group decision

	Neuron models
	The Hodgkin-Huxley model
	The Leaky Integrate and Fire model
	The Izhikevich neuron model
	Original Form
	Generalized Form

	Synapse Model
	Short-term synaptic plasticity
	Long-term synaptic plasticity

	Multi-compartmental models
	Simulation techniques
	Clock-driven approach
	Event-driven approach

	Inputs, heterogeneity, noise and spontaneous activity

	Concluding remarks

	Simulator: Requirements and Related Works
	Requirements
	Related Works
	Discussion
	Outcome

	Simulator: Methods
	Language of model definition
	Language of model definition: possible choices
	Language of model definition: outcome

	Architecture design
	Architecture design: possible choices
	Architecture design: discussion of possible choices
	Architecture design: outcome: Hierarchical-modular architecture

	Network module
	Neurons and synapses
	Data structure for the network structure
	Data structure for the network structure: possible choices
	Data structure for the network structure: outcome

	Input neurons
	General network attributes

	Input module
	The simulation core
	Choice of the simulation technique
	Main simulation algorithm
	Alternative reality
	Alternative reality: motivation and description
	Alternative reality: possible solutions
	Alternative reality: discussion of possible solutions
	Alternative reality: outcome

	Computational improvements
	Limiting frequent use of methods and constructors
	Effective data structures
	Parallel processing: description
	Parallel processing: preliminary notes and trivial solutions
	Parallel processing: Update of States section
	Parallel processing: Detection of Spikes section
	Parallel processing: Propagation of Spikes section
	Parallel processing: outcome

	Spontaneous activity
	Implementation of spontaneous activity: possible solutions
	Implementation of spontaneous activity: discussion of possible solutions
	Implementation of spontaneous activity: outcome
	Implementation of spontaneous activity: choice of pseudorandom generator

	Setting simulation parameters

	Analysis module
	Possible choices of implementation of the analysis module
	Discussion of possible choices of implementation of the analysis module
	Outcome of possible choices of implementation of the analysis module
	Functions of the analysis module: Java part
	Functions of the analysis module: Matlab part

	Other Software

	Simulator: Results
	Validation tests
	Performance
	Outcome

	Model of the Auditory Cortex: Biology Primer
	Model of the Auditory Cortex: Motivation and Related Works
	Motivation
	Hypothesis on emergence of tonotopy

	Related Works
	The spiking neuron models
	Model by Pinho, Mazza and Roque (1999–2006)
	Model by Larson, Billimoria, Perrone, and Sen (2008, 2010)
	Model by Zhou et al. (2012)
	Model by Chrostowski et al (2011)

	The firing rate models
	Model by Harris et al. (2011)
	Model by Schiff, Reyes, de La Rocha, and Marchetti (2008, 2011)
	Model by Loebel, Nelken and Tsodyks (2007)
	Model by Bart, Bao, and Holcman (2005)

	Other models
	Model by Otazu and Leibold (2011)
	Model by Mesgarani, Fritz, and Shamma (2009)

	Concluding remarks to the related works

	Model features

	Model of the Auditory Cortex: Methods
	Model composition
	Coordinate systems and topology
	Connectivity
	Connectivity data
	Selecting presynaptic candidates
	Selecting presynaptic candidates – description
	Selecting presynaptic candidates – solution

	Setting synaptic conductance delays
	Setting synaptic weights
	Connectivity algorithm
	Possible pitfalls and other features
	Self-connections: ``If the same neuron can be selected as pre- and post-synaptic neuron, is this connection allowed?''
	Multi-connections: ``If a pair of pre- and post-synaptic neurons can be chosen more than once, is this connection allowed?''
	Boundary effects: ``How are boundary effects in topological connections handled?''

	Neurons, synapses, and channels
	Model input, output, and free parameters
	Inputs from thalamus
	Spontaneous activity
	Model outputs
	Auditory-related measurements

	Model validation
	Model implementation
	Model parameters
	General model parameters
	Layer parameters
	Neuron types parameters
	Connectivity parameters
	Input parameters

	Tabular description

	Model of the Auditory Cortex: Results
	Parameter Space Search
	Description of the experiments
	Results of the experiments
	Overall description of the results
	Description of the results grouped by features and parameters

	Analysis and discussion of the results
	Explanations
	Comparison to the real data

	Outcome

	Features of the Chosen Parameters
	Description of the experiments
	Results of the experiments
	Analysis and discussion of the results

	Tonotopy Experiments
	Description of the experiments
	Results of the experiments
	Description of the results of general features
	Description of the results of tonotopy-related features

	Analysis and discussion of the results

	Conclusion

	Model of the Auditory Cortex: Discussion
	Conclusion
	Bibliography
	List of Tables
	Attachments

